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Abstract
End-to-end (E2E) automatic speech recognition (ASR) has
made remarkable progress thanks to the abundant annotated
data for a few rich-resource languages. However, data scarcity
remains a challenge for the majority of the world’s languages.
To address this issue, we propose UniSplice, a novel cross-
lingual speech synthesis framework based on data splicing that
leverages self-supervised learning (SSL) units from Hidden
Unit BERT (HuBERT) as universal phonetic units. Our ap-
proach involves splicing speech fragments from rich-resource
languages into complete speech that conforms acoustically to
text from low-resource languages. UniSplice eliminates the
need for computationally expensive neural text-to-speech (TTS)
models, enabling the training of ASR models using on-the-fly
synthesized speech. Experimental results on the COMMON-
VOICE dataset show 20-30% relative improvement for four
Indo-European languages and about 15% for Turkish with a 4-
gram language model for rescoring, in a 10-hour low-resource
setup.
Index Terms: low resource speech recognition, text-to-speech,
data splicing, self-supervised learning

1. Introduction
End-to-end (E2E) automatic speech recognition (ASR) models
have gained popularity in recent years due to their streamlined
architecture and promising performance [1–4]. However, the ef-
fectiveness of E2E ASR models heavily relies on the availability
of large amounts of transcribed audio data, which is often not
the case in low-resource settings. This data scarcity issue poses
a significant challenge to the applicability of E2E ASR models
in low-resource languages [5]. To overcome this challenge, re-
searchers have proposed various solutions, including multilin-
gual transfer learning (MultiASR) [6–10] and self-supervised
learning (SSL) techniques [11–17]. These approaches rely on
paired or unpaired data from various languages to pretrain a
seed model that can be fine-tuned for low-resource target lan-
guages. In contrast, this paper aims to tackle the data scarcity
issue with an efficient text-to-speech (TTS) framework based
on data splicing to generate more paired data in low-resource
target languages, rather than optimizing the pretraining stage.

TTS architectures have been extensively employed to en-
hance ASR performance [18–25]. Specifically, [18, 19] uti-
lized neural TTS models to adapt the RNN-T [26] model from
the source domain to the target domain, while [21] explored
the machine speech chain [20] framework to accomplish alter-
nate adaptation for TTS and ASR models from the audiobook
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domain to the presentation domain. In addressing the degra-
dation of recognition accuracy for out-of-vocabulary (OOV)
words, [22, 23] trained ASR models on audio synthesized with
text containing OOV words. [25] improved the performance of a
children’s ASR system by enhancing the quality of synthesized
children’s speech using multiple filtering algorithms. However,
neural TTS models typically demand substantial quantities of
high-quality data for training. While there has been a significant
reduction in the amount of high-quality single-speaker paired
data required to train these models [27–30], synthesizing coher-
ent speech for multiple speakers with noisy ASR data in low-
resource settings for training, remains a formidable challenge
for neural TTS models. Moreover, neural TTS models suffer
from substantial computational expenses during training and in-
ference, posing a significant obstacle to training an ASR model
using speech synthesized on-the-fly.

In [31], the authors proposed a TTS method that utilizes
a world-level splicing data generation (SDG) approach, which
was shown to outperform even neural TTS approaches for the
text-only domain adaptation task, while requiring a negligi-
ble computational cost. [31] builds a mapping from words to
speech fragments using a customized RNN-T, enabling text
from the target domain to be mapped to speech fragments from
the source domain and spliced into complete speech. However,
the word SDG approach is limited to monolingual scenarios due
to the absence of universal word tokens across languages.

To address this limitation, we proposed UniSplice, a novel
SDG framework that can operate in cross-lingual scenarios. Our
approach involves splicing speech fragments from rich-resource
languages into complete speech by referencing text from a low-
resource language. To achieve this, we adopt the denoised clus-
tering unit (Hunit) from latent representations of Hidden Unit
BERT (HuBERT) [12] as universal phonetic units across lan-
guages. We build a mapping (HuDict) from Hunit n-grams
to speech fragments, and we develop a lightweight model to
perform Grapheme-to-Hunit (G2H) conversion. During speech
synthesis, a text sample from the low-resource language is
mapped into Hunits by the G2H model, and then into speech
fragments by the HuDict. These speech fragments are finally
concatenated into complete speech that acoustically matches the
input text. Details are elaborated in Fig 1.

Our contributions can be summarized as follows: (1) We
introduce an efficient data splicing framework to train ASR
models with on-the-fly synthesized speech. (2) Our framework
leverages universal phonetic units derived from SSL units for
data splicing, enabling it to be language-agnostic. (3) Our pro-
posed framework can operate on unpaired speech from rich-
resource languages and unpaired text from low-resource lan-
guages, making it readily applicable. (4) Experiment results on
various low-resource languages demonstrate consistent word er-
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Figure 1: Proposed UniSplice data splicing framework: (a) The Hunit extractor takes the raw waveform as input and extracts denoised
clustering units (Hunits) from the latent representations. (b) Hunit extractor extracts Hr given Sr . The mappings from Hunit n-grams
in Hr to the corresponding speech fragments in Sr are added to HuDict. (c) Limited paired data {Sl, Tl} processed by Hunit extractor
after duplicate removal is used to train a G2H model. (d) During synthesis, T ′

l is converted to H ′
l by the G2H model and mapped to

speech fragments by querying HuDict, which are finally concatenated into complete speech.

ror rate (WER) reduction by integrating cross-lingually spliced
data into the training of low-resource ASR models.

2. Methodology
2.1. HuBERT
We first briefly recapitulate HuBERT. HuBERT is an SSL ap-
proach exploiting an offline clustering step to provide aligned
target labels for a BERT-like prediction loss [32]. The back-
bone used in HuBERT is a convolutional encoder, followed by a
BERT mask predictor comprised of many identical Transformer
blocks [33]. Given an encoded speech embedding sequence
X = [x1, . . . , xT ], the mask predictor predicts a distribution
over the target codewords at each timestep t with the masked
version X̂ . Denote C as the number of clustered codewords, ec

as the embedding for codeword c and At as the output feature
at step t. The distribution over codewords is formulated as:

p(c | X̂, t) =
exp(sim(AtW, ec)/τ)∑C

c′=1 exp(sim(AtW, ec′)/τ)
(1)

where W is a projection matrix. sim(·, ·) computes the cosine
similarity and τ scales the logit.

Denote discrete target sequence for X as Z =
[z1, z2, . . . , zT ], the prediction loss is formulated as:

L =
∑

t∈M

log p
(
zt | X̂, t

)
(2)

where M ⊂ {1 . . . T} are the masked timesteps for X .
The clustered codewords, which are iteratively refined and

exhibit correlation with the underlying acoustic units, are used
as universal phonetic units in our approach.

2.2. UniSplice
The proposed data splicing framework is comprised of three
components, which require the following datasets: (i) unpaired

speech from the rich-resource language, denoted as Dr and
sampled as Sr , (ii) limited paired speech from the low-resource
language, denoted as Dl and consisting of speech-text pairs
{Sl, Tl}, and (iii) text-only data from the low-resource lan-
guage, denoted as D′

l and consisting of text samples T ′
l . These

components are illustrated in Fig 1 (a) (b) (c), while Fig 1 (d)
demonstrates the audio synthesis procedure.

2.2.1. Hunit Extractor

As shown in Fig 1 (a), the Hunit extractor comprises three mod-
ules: a pretrained HuBERT model, a K-Means cluster module,
and a denoising module. The denoising module consists of a
stack of mode filters, which are commonly used in image seg-
mentation to replace pixels with the most common pixel value
within a given window size. This process creates an impasto
effect that preserves edges while smoothing out the noise. We
apply mode filters to the clustered units of the HuBERT latent
representations to produce reasonable articulatory boundaries.

2.2.2. Hunit Dictionary (HuDict)

The HuDict is a mapping from Hunit n-grams to speech frag-
ments from Dr . For unpaired speech Sr ∈ Dr , we obtain the
frame-level alignment between Sr and Hr with the Hunit ex-
tractor. As shown in Fig 1 (b), the mapping from Hunit n-grams
to triplets (utterance id, start frame, end frame), which indicates
how the corresponding speech fragment could be fetched, are
extracted from the frame-level alignment and added to HuDict.
In practice, we only collect n-grams mappings with 4 ≤ n ≤ 8.
n ≥ 4 is set to achieve a better quality of spliced speech, and
n ≤ 8 is set to reduce the memory overhead for loading HuDict.

2.2.3. Grapheme-to-Hunit (G2H)

We adopt the lightweight SoundChoice [34] Grapheme-to-
Phoneme (G2P) model with Conformer-Transformer architec-
ture [35] to train a sentence-level G2H model. As shown in Fig
1 (c), for paired speech {Sl, Tl} ∈ Dl, we obtain training data
{Tl, Hl} for G2H model by extracting Hunit sequence Hl from
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Sl with the Hunit extractor. Note that Hl contains no consecu-
tive duplicates, which differs from Hr in Fig 1 (b).

2.2.4. Audio Synthesis

As shown in Fig 1 (d), a text sample T ′
l ∈ D′

l is first converted
to the Hunit sequence H ′

l with the G2H model. Then H ′
l is

decomposed into H ′
l n-grams with a divide-and-conquer algo-

rithm shown in Algorithm 1. This algorithm is designed to max-
imize the averaged length of Hunit n-grams, as longer speech
fragments are preferred for generating more fluent speech. The
symbol × in line 10 denotes Cartesian Product. By applying
mathematical induction, it can be proved that Algorithm 1 al-
ways returns Hunit n-gram sequences with maximized averaged
n if such a sequence exists. An Hunit sequence is discarded if
it cannot be decomposed into Hunit n-grams in HuDict with
such a procedure. Finally, the resulting H ′

l n-gram sequences
are mapped to speech fragments by querying HuDict, and the
speech fragments are concatenated into complete speech.

Algorithm 1 Decompose a Hunit sequence into Hunit n-grams
Input: x, the Hunit sequence
Output: y, list of Hunit n-gram sequences
Require: S, the set of all Hunit n-grams in the HuDict

1: function DECOMPOSE(x)
2: y← []
3: for n← 10 to 3 do
4: for i← 0 to length(x)− n do
5: if x[i : i+ n] ∈ S then
6: ypre← DECOMPOSE(x[0 : i])
7: ypost← DECOMPOSE(x[i+ n :])
8: if ypre is ∅ or ypost is ∅ then
9: continue

10: Append (ypre × [x[i : i+ n]] × ypost) to y
11: if length(y) ̸= 0 then
12: return y

13: return ∅

3. Experiments

3.1. Experiment Setup

3.1.1. Data

We conduct experiments by fine-tuning a HuBERT model pre-
trained on LIBRISPEECH with 10-hour paired data from dif-
ferent languages in COMMONVOICE dataset [36]. COMMON-
VOICE1 is a multilingual speech corpus sourced primarily from
Wikipedia articles. We select five languages in our experi-
ments: Frisian, French, Dutch, German, and Turkish. We use
the speech from the 960-hour LIBRISPEECH dataset [37] as Dr

without utilizing the transcriptions. For each of the five lan-
guages in COMMONVOICE, we sample a 10-hour paired data
split as Dl to create a low-resource setup, and D′

l is comprised
of all available text transcriptions for that language. The num-
ber of words for each language in D′

l is listed in Table 1. We
use the speech from the 960-hour LIBRISPEECH dataset [37] as
Dr without utilizing the transcriptions. For each of the five lan-
guages in COMMONVOICE, we sample a 10-hour paired data
split as Dl to create a low-resource setup, and D′

l is comprised
of all available text transcriptions for that language. The num-
ber of words for each language in D′

l is listed in Table 1.
1https://commonvoice.mozilla.org/en/datasets

Table 1: Number of words in D′
l for different languages

Frisian French Dutch German Turkish
# words 275 K 5.5 M 563 K 6.6 M 289 K

3.1.2. Hunit Extractor and G2H Model

We use the officially released HuBERT-base-iter2 2 as the
backend for Hunit extractor. We fetch HuBERT latent represen-
tations from the ninth layer and extract clustered Hunits with a
K-Means model trained on latent representations from Dr . The
impact of number of K-Means clusters on model performance
is investigated in Section 3.2.1. For the denoising module based
on mode filters, we empirically adopt one mode filter with win-
dow size 3 followed by four mode filters with window size 5.

Following SoundChoice-G2P [34], the G2H model is
a Conformer-Transformer encoder-decoder architecture com-
prised of 2 Conformer encoders and 2 Transformer decoders
with hidden dimensions 512 and 8 heads. Instead of train-
ing on Dl from scratch, we use a released SoundChoice-G2P
model3 pretrained on Dr as initialization and fine-tune it on
Dl with the same configurations as the sentence-level training
stage of SoundChoice-G2P. Since the data in Dl is limited, it
takes less than 1 hour to fine-tune the G2H model on a single
GPU. Greedy decoding is adopted for faster inference.
3.1.3. HuBERT Model Fine-tuning

We carry out model fine-tuning with the FAIRSEQ [38] toolkit
and adopt the same model used for Hunit extraction which is
comprised of 12 transformer blocks with hidden dimensions
768 and 8 heads. We follow the base 10h fine-tuning setup in
HuBERT but increase the steps from 10k to 100k since it takes
significantly longer to converge on data from languages other
than English as observed in our experiments. This is likely due
to the language used for fine-tuning being different from the
language used for pretraining. Fine-tuning takes two days on
four GPUs for each language.
3.1.4. Decoding with Language Model

For language model rescoring, we train 4-gram language model
trained on D′

l for each of the five languages. The hyper-
parameters for decoding are tuned on the dev set of each lan-
guage. We use a beam size of 500. The LM weight and word
insertion penalty for decoding are listed in Table 2.

Table 2: Decoding hyperparameters for different languages

Frisian French Dutch German Turkish
LM weight 7.0 4.0 3.2 4.6 3.7
word insert. -0.1 -0.6 -0.8 -0.8 -0.4

3.2. Experiment Results and analysis

We first conduct experiments on Frisian to investigate the im-
pact of various hyperparameters.
3.2.1. Investigation on the number of K-Means clusters

Table 3 shows how the number of K-Means clusters used to
extract Hunits affects the performance. The baseline model
is trained by fine-tuning the pretrained HuBERT model on
the Frisian 10-hour paired data. We conduct experiments

2https://dl.fbaipublicfiles.com/hubert/
hubert_base_ls960.pt

3https://drive.google.com/drive/folders/
1lbSjCKUit8H3FCzaDJmfBDJOkcDRH3XI?usp=sharing
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on 100, 200, and 500 K-Means clusters. Intuitively, the
speech fragments corresponding to the same Hunit n-gram
are more acoustically similar if more clusters are applied for
K-Means clustering. Results from UniSplice-C100 and
UniSplice-C200 show that too few clusters lead to poor
correlation between Hunits and the underlying acoustic units,
resulting in low-quality synthetic data that degrades perfor-
mance. With the number of clustering units increased to 500,
UniSplice-C500 achieves 18.3% and 18.0% relative im-
provement on Dev and Test sets, respectively, over baseline.

Mixed Batch refers to the inclusion of synthetic data in
the same batch as real data. Comparing UniSplice-C500
and UniSplice-C500-S, we observe slight degradation
when Mixed Batch is not applied. This can be attributed
to the greater variation in gradients between real and synthetic
data batches, which may impede the model’s convergence. Sub-
sequent experiments employ the Mixed Batch strategy for
model fine-tuning, along with 500 clusters for Hunit extraction.

Table 3: WER(%) of different number of clusters

System Clusters Mixed Batch Dev / Test

Baseline N/A N/A 15.3 / 15.0
UniSplice-C100 100 ✓ 17.3 / 16.9
UniSplice-C200 200 ✓ 16.8 / 16.4
UniSplice-C500 500 ✓ 12.5 / 12.3
UniSplice-C500-S 500 ✗ 13.0 / 12.6

3.2.2. Investigation on the number of word tokens in D′
l

In table 4, we investigate the impact of the size of D′
l. The per-

formance of the model keeps improving as the amount of text in
D′

l increases from 50K words to 275K words. We also include
results for data synthesis with a VITS [39] neural TTS system
trained on Dl with ESPnet [40] following the multi-speaker
recipe except that the sample rate is set to 16kHz. The results
show that the VITS model trained with 10 hours of ASR data
produces low-quality audio detrimental to ASR performance.

Table 4: WER(%) comparison of different size of D′
l

System #words Dev / Test

Baseline N/A 15.3 / 15.0

VITS Neural TTS 275 K 17.1 / 16.7

UniSplice

275 K 12.5 / 12.3
200 K 12.7 / 12.4
100 K 13.4 / 12.7
50 K 14.8 / 13.9

3.2.3. Validation on different langauges

Finally, we explore the best mixing ratio of real and synthetic
data in Frisian and validate the effectiveness of the proposed
methods in all languages. Since UniSplice introduces additional
text for speech synthesis, we also report performance with a 4-
gram LM rescoring. The results are shown in Table 5.

Adjusting the mixing ratio of real and synthetic data is im-
plemented by repeating Dl or D′

l multiple times. E.g. The 1:2
mixing ratio means to repeat D′

l twice in each epoch before
mixing real and synthetic data into batches. Results show the
best mixing ratio to be 2:1 for Frisian, and we apply this ratio to
other languages. Comparing the third and sixth rows, increasing
the proportion of synthetic data is more harmful than increasing
real data, which can be ascribed to the mismatch between the
synthesized training data and the real test data.

The results in Table 5 indicate a consistent improvement
across all languages with UniSplice. However, the relative im-
provement for Turkish (7%) is comparatively lower than other
languages (10-20%) without LM rescoring. This is probably
because English and the four non-Turkish languages belong to
the Indo-European family and share similar acoustic character-
istics. Although the unpaired text D′

l is significantly larger for
French and German as shown in Table 1, the relative improve-
ment is not substantial, which can be attributed to the size of
HuDict being fixed. Notably, the application of LM rescoring
results in larger relative improvements for all languages (15%
for Turkish and 20-30% for other languages), highlighting the
compatibility between UniSplice and LM rescoring.

Table 5: WER(%) results on all languages

Language System LM Mixing Ratio Dev / Test

Frisian

Baseline ✗ N/A 15.3 / 15.0
✓ 2.9 / 2.7

UniSplice

✗ 1 : 2 13.1 / 12.7
✗ 1 : 1 12.5 / 12.3
✗ 2 : 1 12.2 / 11.8
✗ 3 : 1 12.5 / 11.9
✓ 2 : 1 2.0 / 2.0

French
Baseline ✗ N/A 42.8 / 46.9

✓ 27.4 / 31.4

UniSplice ✗ 2:1 35.7 / 39.3
✓ 21.1 / 24.1

Dutch
Baseline ✗ N/A 20.9 / 22.1

✓ 13.4 / 11.9

UniSplice ✗ 2:1 17.9 / 18.7
✓ 10.7 / 9.2

German
Baseline ✗ N/A 36.5 / 39.1

✓ 19.0 / 20.7

UniSplice ✗ 2:1 33.0 / 35.1
✓ 14.7 / 15.8

Turkish
Baseline ✗ N/A 28.1 / 29.2

✓ 10.1 / 9.5

UniSplice ✗ 2:1 26.2 / 27.1
✓ 8.6 / 7.9

4. Conclusions
In this paper, we proposed UniSplice, a cross-lingual data splic-
ing framework for low-resource speech recognition. UniS-
plice leverages denoised clustering units from HuBERT latent
layers (Hunits) as universal phonetic units, which allows for
cross-lingual data splicing. Our approach enables on-the-fly
speech synthesis using text from low-resource languages and
speech fragments from rich-resource languages, which can be
used to improve the training of ASR models. Experiments on
five languages from the COMMONVOICE dataset demonstrate
the effectiveness of our proposed framework. By introduc-
ing cross-lingually spliced data during training, we achieved a
20-30% relative improvement in WER for four Indo-European
languages and about 15% for Turkish with a 4-gram language
model. These promising results suggest that UniSplice can be a
valuable tool for building low-resource ASR systems.
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