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Abstract

Existing fake audio detection systems perform well in in-
domain testing, but still face many challenges in out-of-domain
testing. This is due to the mismatch between the training and
test data, as well as the poor generalizability of features ex-
tracted from limited views. To address this, we propose multi-
view features for fake audio detection, which aim to capture
more generalized features from prosodic, pronunciation, and
wav2vec dimensions. Specifically, the phoneme duration fea-
tures are extracted from a pre-trained model based on a large
amount of speech data. For the pronunciation features, a
Conformer-based phoneme recognition model is first trained,
keeping the acoustic encoder part as a deeply embedded feature
extractor. Furthermore, the prosodic and pronunciation features
are fused with wav2vec features based on an attention mecha-
nism to improve the generalization of fake audio detection mod-
els. Results show that the proposed approach achieves signifi-
cant performance gains in several cross-dataset experiments.
Index Terms: fake audio detection, ASVspoof, prosodic fea-
ture, pronunciation feature, cross-dataset

1. Introduction

Currently, various types of front-end features are used for de-
tecting fake audio. These include short-time spectral features,
raw audio, fundamental frequency features, and self-supervised
features [1, 2, 3, 4, 5]. Todisco[6] demonstrated the superi-
ority of Constant Q Cepstral Coefficients (CQCC) over Mel
Frequency Cepstral Coefficients (MFCC) using the constant Q
transform. Sahidullah[7] proposed Linear Frequency Cepstrum
Coefficients (LFCC) by replacing Mel scale filters with linear
filters, focusing on high-frequency band features. Das[8] im-
proved CQCC features with Extended CQCC (eCQCC) and
CQSPIC features. These methods achieved promising results
in ASVspoof2019 logical access scenarios with EERs below 1

For prosodic features, fundamental frequency has been in-
vestigated [11, 12, 13, 14]. Prosodic features capture speech
style and intonation from longer speech segments, such as
phonemes and syllables [15]. Patel[16] improved fake audio
detection by fusing FO contour and 36-D MFCC at the score
level. Pal[17] proposed fundamental frequency variation fea-
tures to capture prosodic differences between real and fake au-
dio. Xue[18] introduced FO subband, utilizing FO information
for frequency band division. Another popular feature extrac-
tor is wav2vec, based on self-supervised learning [19, 20, 21].
Wav2vec features trained with unlabeled data have achieved top
rankings in competitions [19, 21].

Detecting fake audio in practical applications can be chal-
lenging due to the limited generalization of existing systems

to unknown types of spoofing attacks. This limitation arises
from the lack of generalization capability in features extracted
from a single dimension. For example, short-time spectral fea-
tures, extracted from short frames of 20-30 ms, are susceptible
to channel effects. Moreover, current methods for extracting
prosodic features only focus on FO features and overlook cru-
cial phoneme duration features. It is worth noting that the dura-
tion of the same phoneme can vary significantly in different real
audio contexts, while it tends to be more uniform in fake audio.
Additionally, the self-supervised features generated by wav2vec
may contain speech information that is difficult to identify.

To address these challenges, we propose the use of multi-
view features to enhance the detection of fake audio, thereby
improving generalization across datasets. Our approach incor-
porates features from three dimensions: prosodic, pronuncia-
tion, and wav2vec. We introduce phoneme duration extractors
and pronunciation feature extractors to achieve this. To ob-
tain phoneme-like duration features, we encode the speech us-
ing the pre-training model HuBERT[22] without the transcript.
For pronunciation features, we train a Conformer-based[23]
phoneme recognition model and utilize the acoustic encoder
part as a deeply embedded feature extractor. To further en-
hance performance, we fuse prosodic and pronunciation fea-
tures with discrete clustering-based wav2vec features using an
attention mechanism. Our experimental results demonstrate
that these auxiliary features improve the detection performance
both within and outside the domain. The main contributions of
this study can be summarized as follows:

* We propose pronunciation features and phoneme duration
features for fake audio detection for the first time.

e We use the attention mechanism approach to effectively
fuse the prosodic features and pronunciation features with
wav2vec features.

The rest of this paper is organized as follows: Section 2
illustrates our method. Experiments, results and discussions are
reported in Section 3 and 4, respectively. Finally, we conclude
the paper in Section 5.

2. Our Method

Our model comprises three modules: feature extractor, atten-
tion module, and back-end. The feature extractor extracts three
types of features: wav2vec, phoneme duration, and pronuncia-
tion. We consider phoneme duration as a reflection of prosodic
information, hence referring to it as ’prosodic feature.” The at-
tention module fuses prosodic and pronunciation features with
varying weights into the wav2vec features. The back-end mod-
ule learns a deep speech representation. Figure 1 (a) illustrates
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the architecture. Further details are provided in subsequent sec-
tions.

2.1. Features

Duration: Since existing publicly available fake audio datasets
such as ASVspoof, ADD2022, etc., do not provide audio-
corresponding transcript, we cannot extract the duration infor-
mation of the fake audio by forcing the alignment. Inspired
by [24], we encode the speech with the pre-training model Hu-
BERT, and the resulting encoding vector is an encoding similar
to speech phonemes. As shown in Figure 1 (b), the first step is
to encode the original audio into an encoding vector with a Hu-
BERT model which is pre-trained on the LibriSpeech corpus.
We choose k-means as the quantization operation to transform
the output of the encoder from continuous to discrete values.
Formally, D; = Q(C;), where Q is the quantization function
k-means, C; is a sequence of vectors, D; = [d1,d2,...,dr]
such that d; € {1,2,..., K} and K is the size of the phoneme
vocabulary, we set K = 100. We refer to the final obtained
Dj(e.g.,[1,1,3,3,3,4]) as the phoneme duration vector.

Pronunciation: The Conformer model is widely used in speech
recognition, so we adopted the pronunciation feature extrac-
tors based on the Conformer structure, as shown in Figure 2.
First, we extract 80-dimensional log mel spectrograms from the
raw audio. Then we use convolution downsampling in the time
scale. The downsampled log mel spectrograms is then fed into
the Conformer module, which follows the configuration in [23].
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Then the predicted phoneme sequences are obtained through the
CTC decoder and the attention decoder. The CTC decoder has
a fully-connected layer. The attention decoder is location sen-
sitive and has a decoder LSTM layer with a hidden size of 320.
The training loss is a linear combination of the CTC and atten-
tion losses:

L=alcrc+(1—-a)larr 1)
Where Lorc and £ a7 denote the loss of CTC and attention.
a € [0,1] is a hyper-parameter, and we set it to be 0.5. After
training, we keep the acoustic encoder part as a deeply embed-
ded feature extractor. The pronunciation features encoded from
raw audio are regarded as the pronunciation representations of
the speech.
Wav2vec: Wav2vec 2.0 is a self-supervised speech represen-
tation learning method that can learn representations directly
from raw audio signals without annotations. Its innovation lies
in the use of the Transformer architecture, which can capture
long-range dependencies. The model is trained using a masked
contrastive predictive coding (CPC) objective to predict speech
signals. The use of large-scale datasets and training processes
improves the quality of the representations.

2.2. Fusion Strategy for Features

‘We use Transformer [25] to fuse the wav2vec feature with the
other two features, respectively. We only use the encoder part of
the Transformer. It is based on multi head attention mechanism.
Multi head attention operates multiple self attention operations
in parallel. The formula is as follows:

T

, QK
Attention(Q, K, V) = softmax
(@Q.1.V) = softmar( 21

where d; is the key dimension. Here, we use the embedding of
wav2vec as keys and values, and the embedding of duration and
pronunciation as queries, respectively. The multi-head attention
mechanism obtains h different representations of (Q, K, V),
computes scaled dot-product attention for each representation,
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Table 1: Statistics of experimental datasets.

Datasets #Real #Fake Others
ASVspoof2019(IN) 7,355 63,882 TTS and VC, English
ASVspoof2015(A) 9,404 184,000 TTS and VC, English

VCC2020(B) 2,660 6,120 VC, multilingual
In-the-Wild(C) 18,863 11,816 realistic, English
ADD2022(D) 30,000 70,000 partial fake, Chinese

concatenates the results, and projects the concatenation through
a feed-forward layer. It can be defined as:

MultiHead(Q, K, V) = Concat(heads, . . ., headh,)WO
©)]
head; = Attention(QW;%, KW, vw,")y ()

2.3. Back-end Architecture

Regarding the back-end architecture, we follow the conclu-
sion in [20] that a deep back-end is necessary when the front-
end pre-training features are fixed. Our back-end architecture
consists of a light convolutional neural network (LCNN) fol-
lowed by two bi-directional recurrent layers with long short-
term memory (LSTM) units, a global average pooling layer, and
a fully connected (FC) output layer. We adopt the same config-
uration as presented in [20].

3. Experiments
3.1. Dataset

We employ five fake audio datasets. All of the models
were trained on the ASVspoof2019[9] LA training sets. The
ASVspoof2015[26] is the most similar to the ASVspoof2019
LA for their audios are collected from the same datasets or con-
version algorithms. The VCC2020[27] dataset is multilingual.
The In-the-Wild[28] dataset is collected from the real world.
The ADD2022[29] track2 dataset is Chinese and it is partially
fake.

3.2. Experimental Setup

The Wav2vec XLSR model was obtained from the Fairseq
project'. The model was pre-trained on a training set that in-
cludes Multilingual LibriSpeech, CommonVoice, and BABEL,
which cover 8, 36, and 17 languages, respectively. This exten-
sive training corpus allows the Wav2vec XLSR model to learn
robust and diverse speech representations across a wide range of
languages and accents. In order to train the Conformer model
described in sections 2.1, we utilized the LibriSpeech dataset,
which consists of 960 hours of audio recordings [30]. The cor-
responding text transcripts were used in conjunction with the
LibriSpeech lexicon ? to obtain phoneme sequences for training
the model.

The Wav2vec XLSR model has a dimension of 1024. In
order to reduce the computational complexity, we apply a fully
connected layer to reduce the dimensionality of the input fea-
tures to 128. To form batches, we fix the length of each sample
to 500 frames by truncating or concatenating. Thus, the shapes

Thttps://github.com/pytorch/fairseq/tree/main/examples/wav2vec/xlsr

Zhttp://www.openslr.org/11/
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of the resulting wav2vec, duration and pronunciation features
are 500 x 128, 500 x 1 and 500 x 144 , respectively. The audio
sampling rate is 16k. For comparison, the baseline uses LFCC
extracted with a frame length of 20 ms, a frame shift of 10
ms, and a 512-point fast Fourier transform (FFT). Each LFCC
frame vector has a dimension of 60, including static, delta, and
deltadelta components. In addition, 500 frames of the input is
also needed at inference time.

For feature fusion, we use two methods: concatenation and
the attention mechanism. For the former, we have directly
concatenated the wav2vec features and the other two features
from the temporal dimension, resulting in feature shapes of
500 x (128+1+-144). For the latter, we first perform the atten-
tion transformation of wav2vec and the other two features sepa-
rately, and then concatenate the obtained vectors to get the final
representation. For the attention mechanism, we use 6 blocks
and 8 heads.

To train the model, we use the Adam optimizer with a learn-
ing rate of 5 x 10™°. The batch size is 32. The model is trained
for 200 epochs. The EER [31] is used as the evaluation metric.

4. Results and Discussion
4.1. Baseline

Table 2 displays the results of individual features on different
datasets. It’s important to note that our models were trained
solely on the ASVspoof2019 LA dataset and subsequently
tested on various datasets. Testing across datasets poses a sig-
nificant challenge. For example, LFCC achieved an EER of
4.86% on the ASVspoof2019 LA set but exhibited decreased
performance on the other four datasets. In contrast, Wav2vec
demonstrated better generalization with an EER of 6.59% on
the ASVspoof2015 LA test set but performed poorly on the
VCC2020, in_the_wild, and ADD2022 datasets. The varia-
tions in fake speech generation and recording environments
contribute to these observations. Our findings underscore the
motivation of our paper, which aims to enhance the generaliza-
tion of detection models across datasets.

The second observation is that individual prosodic or pro-
nunciation features exhibited poor performance on in-domain
and out-of-domain tests. This could be attributed to the fact that
prosodic features are one-dimensional, while wav2vec features
are 128-dimensional and LFCC features are 60-dimensional.
Due to their limited dimensionality, prosodic features contain
less information compared to short-time spectral features and
wav2vec features, which leads to the loss of acoustically rele-
vant information in speech. In addition, the poor performance
of pronunciation features could be due to the small size of the
training data for the pronunciation extractor, which only con-
tained 960 hours of data, compared to the 436k hours of training
data for wav2vec.

4.2. Proposed Method Results

The last few rows of Table 2 show the results of the proposed
approach across datasets. We can draw the following conclu-
sions: first, for both in-domain and out-of-domain tests, the
performance of combining the prosodic features and pronun-
ciation features with the wav2vec features is better than that of
using the wav2vec features alone. This shows that using the
prosodic and pronunciation features as auxiliary features has
a positive impact. Specifically, concatenating the two features
with the wav2vec features yielded the most noticeable perfor-
mance improvement, with the EER decreasing from 6.59% to



Table 2: EER(%) of our proposed different systems in in-domain and out-of-domain testing, where "IN’ denotes ’ASVspoof2019 LA’ and
‘A’, ‘B’, ‘C’, ‘D’ denotes 'ASVspoof2015°, "VCC2020’, ’in_the_wild’ and ’ADD2020 track2’, respectively. O1 denotes concatenating
and O denotes the attention mechanism. When utilizing a single feature as input, neither concatenation nor attention fusion is
employed. Results are the average obtained from three runs of each experiment with different random seeds.

Feature IN A B ¢ D
01 02 01 02 01 02 01 02 Ol 02

Pron 11.82 - 25.31 - 40.83 - 58.53 - 45.38 -

Duration 20.82 - 42.18 - 48.31 - 66.48 - 48.51 -

Duration + Pron 9.72 - 32.74 - 37.47 - 59.43 - 43.26 -

LFCC 4.86 - 28.15 - 35.62 - 62.53 - 43.62 -
Pron + LFCC 3.82 3.63 | 25.89 24.07 | 31.58 29.64 | 57.24 56.77 | 37.86 36.22
Duration + LFCC 435 404 | 28.05 2542 | 3293 3241 | 60.08 5891 | 41.24 39.79
Duration + Pron +LFCC 3,51 318 | 2543 21.86 | 30.84 28.36 | 5549 54.22 | 3594 34.82

Wav2vec 3.16 - 6.59 - 19.33 - 43.81 - 35.19 -
Pron + Wav2vec 2.83 1.97 | 4.85 3.28 17.28 1531 | 40.79 3936 | 32.18 31.52
Duration + Wav2vec 3.08 244 | 533 4.25 18.05 17.54 | 42.15 4137 | 3427 32.68
Duration + Pron + Wav2vec 2.35 1.58 | 3.96 3.08 1645 14.76 | 38.57 36.84 | 30.77 29.53

Table 3: Compare with the system of cross-dataset testing re-
cently proposed. ’IN’ denotes "’ASVspoof2019 LA’, ‘A’ denotes
"ASVspoof2015°, and ‘B’ denotes "VCC2020’.

Methods IN A B
Vanilla [32] 2.29 | 26.30 | 41.66
AUG [32] 292 | 16.25 | 30.51
MT-AUG [32] 341 | 22.10 | 28.85
ADV-AUG [32] 323 | 14.38 | 27.07
Duration + Pron +LFCC (ours) 3.18 | 21.86 | 28.36
Duration + Pron + Wav2vec (ours) 1.58 | 3.08 | 14.76

3.96% on the ASVspoof2015 test set. This is due to the ad-
dition of wav2vec information from the prosodic and pronun-
ciation dimensions. Second, the fusion method using the at-
tention mechanism has better performance than the direct con-
catenating method. For example, when the front-end input is
“duration + pron+ wav2vec”, the performance of the attention
mechanism approach is 1.69% better than the concatenate op-
eration on the VCC2020 test set. This is because the attention
mechanism allocates the weights of prosodic features and pro-
nunciation features, which makes the model pay more attention
to features that can distinguish real and fake audio, thus improv-
ing the generalization of the model. Third, in the cross-dataset
test, the proposed method improves ASVspoof2015 more than
the other three datasets. For example, when the front-end in-
put is “duration + pron+ wav2vec”, the relative improvement
of ASVspoof2015 with WAV2VEC features alone is 53.26%,
compared with 23.64%, 15.90%, and 15.76% for VCC2020,
in_the_wild, and ADD2022, respectively. This is because the
dataset composition of ASVspoof2015 is similar to that of
ASVspoof2019. Moreover, for LFCC, similar conclusions to
wav2vec can be drawn. First, for both in-domain and out-of-
domain tests, the performance of combining the prosodic fea-
tures and pronunciation features with the LFECC features is bet-
ter than that of using the LFCC features alone. Second, the
fusion method using the attention mechanism has better perfor-
mance than direct concatenating method. Third, in the cross-
dataset test, the proposed method improves ASVspoof2015
more than the other three datasets.

Table 3 compares our proposed methods with recently pro-
posed cross-dataset testing systems [32]. When utilizing “du-

3847

ration + pron + wav2vec” as the front-end feature, our system
significantly outperforms other systems in both in-set and out-
of-set performance. Although the performance improvement is
not as pronounced as with “duration + pron + wav2vec,” us-
ing “duration + pron + LFCC?” still achieves competitive results
in both in-set and out-of-set scenarios. Notably, we observed
a substantial enhancement in cross-dataset testing when solely
relying on wav2vec features. Since wav2vec features are ex-
clusively trained on real speech data without exposure to fake
audio, they are theoretically well-suited for generalizing to all
types of fake audio. However, experimental findings indicate
that the generalization of wav2vec features is still influenced
by the match between the test and training sets. Our experi-
ments demonstrate that fusing prosodic and pronunciation fea-
tures with wav2vec features can further enhance the generaliza-
tion of cross-dataset detection.

5. Conclusion

In this paper, we observe a significant performance degrada-
tion of existing fake audio detection systems in cross-dataset
testing. This paper proposes multi-view features for fake audio
detection, which attempts to capture more generalized features
from the view of prosodic features, pronunciation features and
wav2vec features. The results show that the prosodic and pro-
nunciation features can be used as auxiliary features to improve
the detection performance in and out of the domain. The fu-
sion of the prosodic features and pronunciation features with
wav2vec features is more effective by using the attention mech-
anism. In the future, we will explore different fusion strategies.
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