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Abstract
Recently, speaker verification systems benefit from deep neu-
ral networks and the size of speaker embedding encoder in-
creases with these sophisticated architectures. Nevertheless,
mobile devices have inadequate memory for oversized embed-
ding extractors, thus demanding compact networks. In this pa-
per, we explore neural network quantization for model compres-
sion. Specifically, we first propose a novel uniform quantization
method based on K-Means clustering. Then, to further improve
the small model performance, mixed precision quantization is
introduced. Besides, we implement a multi-stage fine-tuning
(MSFT) recipe to boost the accuracy of mixed-precision model.
In experiments, the performance degradation of 4 bit quantized
ResNet34 is negligible. Our quantized models outperform for-
mer model compression methods in terms of size and accuracy.
In addition, mixed-precision quantization with MSFT strategy
further improves the model performance.
Index Terms: speaker verification, model compression, neural
network quantization, mixed precision quantization

1. Introduction
With the implementation of deep neural networks in speaker
verification systems, evident progress in model performance has
made [1, 2, 3, 4]. Among these deep architectures, ResNet [5]
and ECAPA-TDNN [4] are two of the most popular and efficient
speaker embedding extractors. However, while larger models
generally lead to better performance, their excessive memory
usage restricts their application in mobile devices. Thus, there
is a growing interest in finding a balance between model size
and system performance.

To address this issue, model compression approaches are
proposed to reduce the model size while ensuring high perfor-
mance. Various methods have been developed, including re-
ducing the number of parameters through knowledge distilla-
tion [6] and model pruning [7, 8]. Besides, some innovative
lightweight model designs are raised. They build more minor
architecture with spatial separable convolution kernels and less
repetitive blocks [9, 10]. Others trade the accuracy of parame-
ters for the compactness of models, namely model quantization
[11, 12, 13]. Compared with other methods, the superiority of
model quantization is keeping the integrity of model structure,
model compression is achieved by reducing the parameter pre-
cision. Previous work states the redundancy of parameter pre-
cision commonly exists in neural networks [14, 15]. In view of
this observation and previous work [16] in our field, we found
model quantization a promising way to decrease the model size.

Although the quantization compression method has the ad-
vantage of maintaining the integrity of the model, there are
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some problems in the previous quantization methods that limit
their performance[17]. The previous quantization method[16]
pursues the high compression ratio of the model, but the perfor-
mance of the model is seriously degraded; Other methods[18,
19] adopt fixed quantization values and training methods for
all parameters in the model, resulting in excessive compression
loss. To solve this problem, we propose an adaptive centroids
selection strategy, which derives different quantization values
for each part of the model. Our method realizes lossless com-
pression under higher compression ratio.

Contributions of this paper are as follows: First, we develop
a novel quantization method and obtain efficient uniform quan-
tized models. Second, we implement a mixed-precision quan-
tization algorithm to achieve better results than uniform quan-
tization. Third, we further improve the performance of mixed-
precision quantization with the multi-stage fine-tuning (MSFT)
recipe. Our proposed quantization algorithm has yielded sat-
isfactory results in experiments conducted on the Voxceleb
dataset. We achieve lossless quantization at 4 bit uniform preci-
sion. The accuracy of our mixed-precision quantization model
with MSFT has surpassed that of uniform quantization at a com-
parable model size. Additionally, our proposed method has out-
performed other model compression methods in terms of per-
formance and model size.

The content of this paper is organized as follows: we in-
troduce related works on model quantization in section 2, the
description of our methods is presented in section 3, and the
experimental setup and implementation details are given in sec-
tion 4. The experimental results are shown in section 5. Finally,
section 6 is the conclusion.

2. Related work
In this section, we refer to previous work in model compres-
sion in speaker verification domain and briefly introduce mixed-
precision quantization.

2.1. Model compression in speaker verification

Previously proposed researchers adopt various methods to re-
duce the speaker verification system size. [20, 21] implement
knowledge distillation to speaker embedding extractor, with this
technology, small models gain comparable performance against
original models. [16] applies a binary quantization to the extrac-
tor. The model is compressed by 32 times and all parameters
are quantized to two values; however, the model performance
drops dramatically. Other approaches [10, 22] redesign encoder
architectures with fewer parameters to compress model size.

2.2. Mixed-precision quantization

Mixed-precision quantization allocates the precision of param-
eters according to the sensitivity of each layer to quantiza-

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

5331 10.21437/Interspeech.2023-927



Mixed-precision

search

Pretrained model Mixed-precision

combination
Distribution Centroids

Mixed-precision

quantization

Mixed-precision

quantization model

Partition + K-Means

Partition + K-Means

Partition + K-Means

Figure 1: The pipeline of mixed-precision quantization. Quantization centroids are determined independently for each model layer to
adapt the layer-wise distribution of parameters. The algorithm of mixed-precision research is introduced in section 3.3; quantization
centroids are derived by the method in section 3.2.

tion. Uniform precision quantization applies the same bit-width
quantization to all parameters, which ignores the sensibility
variance of different layers to quantization. To measure this
sensibility, [23] proposed a criterion related to the Hessian ma-
trix. According to the order of sensibility and overall model
size restriction, mixed-precision search is implemented to pro-
duce a reasonable quantization combination for the model. In
this paper, we realize the mixed-precision quantization for per-
formance improvement.

3. Proposed methods
In this section, we introduce in detail our uniform and mixed-
precision quantization techniques and fine-tuning methods.

3.1. Basic definition of quantization

Quantization algorithms aim at preserving model performance
while compressing the bit-width of parameters. Model size de-
creases by reducing parameter-level memory occupation. Un-
like traditional CNNs, each learnable parameter in quantization
model is stored at lower bit precision (3 or 4 bit, even 1 bit for
binary quantization) instead of 32 bit. All parameters are ap-
proximated in few fixed values.

Full-precision quantization centroids are stored for every
layer. To reduce the memory usage of parameters, the original
parameters are converted into integers. The integer set N is
defined as follow:

N ∈ {0, 1, 2, . . . , 2n − 1} (1)

where n represents the quantization precision in bit. And
we build a bijection from N to the quantization centroids set C:

C(l) = Ψ(N (l)) =
{
q
(l)
1 , q

(l)
2 . . . , q

(l)
2n

}
(2)

where C(l) denotes the quantization value set in the l-th layer,
Ψ is the bijection. In this way, learnable parameters can be
stored in a fewer bits and converted to full-precision values in
the inference stage.

Then the quantization operation f(·) and the final quantized
parameters Q are defined as below:

Q(l) = α(l)C(l) (3)

f
(
W (l)

)
= argmin

Q(l)

∣∣∣W (l) −Q(l)
∣∣∣ (4)

where α represents the learnable scaling factor, W (l) is the
weights in the l-th layer. We achieve quantization f of param-
eters in the model by approximating the original weights in the
nearest quantization value.

3.2. K-Means based quantization aware training

We introduce the derivation of quantization centroids of our
model in this section. The weight distribution of each layer in
the model differs; However, previous quantization approaches
applied the same centroids for all layers.

To alleviate this mismatch between quantization centroids
and parameter distribution, we proposed K-Means based Quan-
tization Aware Training (KMQAT). First of all, kmqat divides
the weight of each layer into n intervals, which ensures that
each part of the parameter distribution will be assigned a corre-
sponding centroid; Secondly, KMQAT performs K-Means clus-
tering in each interval to ensure the minimum quantization loss
in this interval. For each layer, parameters are partitioned into n
intervals with same width according to their value:

Ŵ l = W l
1 ∥W l

2 ∥ · · · ∥W l
2n (5)

where n is the bit precision of current layer, Ŵ l denotes the
clipped weight of l-th layer, W l

i is the i-th interval of weight.
In partition, we focus on 90% of the parameters that lie near

the peak of distribution to avoid the negative effect of outliers.
The ablation study conducted on this percentage is shown in Ta-
ble 1. Then we implement K-Means clustering algorithm with
only one center in each weight partition. The centroid set of the
l-th layer is given by:

C
(l)
KMQAT =

{
Φ(W l

1),Φ(W
l
2), · · · ,Φ(W l

2n)
}

(6)

where Φ denotes the cluster operation. So far, we have achieved
adaptive quantization by adapting the centroid to the weight dis-
tribution.

3.3. Mixed-precision quantization

From the method in section 3.2, we can achieve uniform quan-
tization. However, due to the characteristics of deep neural net-
work, different layers have different sensitivity to quantization,
however, uniform quantization ignores this sensitivity differ-
ence. Thereby, we implement mixed-precision quantization to
overcome this issue.

Mixed-precision quantization allows different bit-width in
one quantized model. It improves model performance by real-
locating the quantization precision across layers. As illustrated
in Figure 1, we utilize uniform quantized models as candidates
for mixed-precision search. Mixed-precision search distributes
quantization precision to layers of the ResNet model. Then the
layers are quantized at different precision. Finally, we fine-tune
the mixed-precision quantized model.

We adopt different precision for each layer regarding its
sensitivity to quantization. Inspired by [24], the sensitivity of
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layers is estimated by the trace of the Hessian matrix. The total
sensitivity is defined as:

ΩHes =
L∑

i=1

ΩHes
i =

L∑

i=1

Tr
(
H(i)

)
∥W (i) −Q(i) ∥22 (7)

where ΩHes represents the total sensitivity of the model,
H(i) denotes the Hessian matrix of the i-th layer and L is the
number of layers. There are three principals that the search al-
gorithm obeys: First, the layer with high sensitivity to quanti-
zation should have higher precision than the ones with lower
sensitivity. Second,the total model size is limited. Third, com-
bination with lowest ΩHes is selected for mixed-precision quan-
tization.

3.4. Multi-stage fine-tuning
Especially, we develop the multi-stage fine-tuning (MSFT) to
further improve the performance of mixed-precision quantiza-
tion. Due to various weight precision in the model, if the param-
eters of different layers are trained together during the training
session, [23] indicate that the model will possibly fall into the
sub-optimal solution. MSFT progressively quantizes the lay-
ers in accordance with their bit-width instead of quantizing the
whole model entirely. [23] demonstrates that quantization be-
gins from lower precision layers achieves better results. In our
experiments, quantization begins with lower precision layers.

Algorithm 1 Our proposed multi-stage fine-tuning (MSFT)
recipe for mixed-precision quantization

Input: f : quantization operation; W : pretrained full-precision
weights; P : bit precision of each layer derived by mixed-
precision search; Q: bit precision contained in P

Output: Mixed-precision quantized model
1: Initial W = {W1,W2, ...,WL};P = {p1, p2, ..., pL};

Q = {q1, q2, ..., qn} where q1 < q2 < ... < qn; j = 1
2: repeat
3: for i in {1, 2, ..., L} do
4: if pi ≤ qj then
5: Wi ← f(Wi);
6: else
7: Wi ←Wi;
8: end if
9: end for

10: Train W until convergence;
11: j ← j + 1;
12: until The model is fully quantized

4. Experimental setups
4.1. Datasets
Our experiments are conducted in VoxCeleb1 [25] and Vox-
celeb2 [26] dataset. The pretrained model and the quantized
models are trained with the development set of Voxceleb2. The
test sets are Voxceleb1-O, Voxceleb1-E and Voxceleb1-H. We
apply data augmentation and speed perturbation in experiments
in order to obtain the robustness of the system. RIRs [27] and
MUSAN [28] noises are added to training data. Speed pertur-
bation changes the original speed of training utterances to 0.9
and 1.1 times, thus adding twice as many speakers.

4.2. Implementation Details
As a mainstream embedding extractor, pretrained ResNet34 is
quantized in our experiment. Utterances length is set to 200
frames in training session. We conduct 80-dimensional Fbank
input features. Additive Angular Margin (AAM) loss is adopt

Table 1: The ablation study on the percentage of parameters
nearby 0 in partition.

Model Percentage
of param

Vox1-O
EER(%)

Vox1-E
EER(%)

Vox1-H
EER(%)

4 bit-KMQAT
ResNet34

100% 0.925 1.047 1.914
90% 0.957 1.024 1.898
80% 0.963 1.039 1.910

[29] as loss calculator, angular margin m is set to 0.2. We set
the initial learning rate to 0.0001 with 3 warm-up epochs and
the final learning rate of 0.00001. The equal error rate (EER)
is considered as the performance reference index. The uniform
quantization models are trained for 40 epochs, and 60 epochs
are trained in total for mixed-precision quantization ones.

5. Results and analysis
5.1. Analysis of quantization results
5.1.1. Uniform quantization results
Uniform quantization is adopted at 1, 2, 3 and 4 bit precision
to the original ResNet34. We quantize all weights in convolu-
tion and linear layers, which represent 99.42% parameters in
the model. Experimental results are shown in Table 2. At 4
bit uniform quantization, the performance drops relatively by
7.7% on Voxceleb1-O, the relative degradation of performance
is only 1.6% and 2.6% on Voxceleb1-E and Voxceleb1-H, re-
spectively. KMQAT realizes a lossless quantization on Vox1-E
and Vox1-H at a compression ratio of 7.72x.

5.1.2. Mixed-precision quantization results
Mixed-precision quantization is proposed to reassign quanti-
zation precision among layers to improve performance. From
the results of mixed-precision search, the shallower convolution
layers are more sensitive to quantization, and the last convolu-
tion and fully-connected layers have lower sensitivity. Experi-
mental results in Table 2 show that the performance improve-
ment achieved through mixed-precision is limited. Due to the
variety of bit-widths in the model, quantizing all parameters at
same time impedes the normal optimization of scaling factor.
Therefore, we design multi-stage fine-tuning to promote mixed-
precision quantization training.

5.1.3. MSFT results
In our experiments, mixed-precision quantization models with
MSFT further improves the performance at comparable size of
uniform quantization. The 2.57MB mixed precision model oc-
cupies less memory than the uniform one, and achieves 5.8%,
2.6% and 3.2% relative amelioration on Vox1-O,Vox1-E and
Vox1-H. Through experiments, we demonstrate that mixed-
precision quantization and MSFT are effective methods to boost
performance of quantization models.

5.2. Comparison of KMQAT and other compressed models

We implement previous quantization methods on our baseline
for the convenience of comparison. The results are shown in
Table 3. In the experiment, quantized ResNet34 surpasses other
quantization model [18, 19] and compressed full-precision
models with similar architecture [22, 30] in terms of EER.

At 1, 2 and 3 bit precision, experiments indicate KMQAT
has obvious advantages over other model compression and
quantization methods. In the extreme quantization domain, our
proposed method has better results than existing binary[16] and
ternary[31] quantization methods. Moreover, KMQAT over-
takes some recently proposed lightweight full-precision net-
works [10, 32] at comparable size.
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Table 2: Performance of the full-precision and quantized ResNet34 on the Voxceleb1 test sets. “MP” means mixed-precision quanti-
zation. ”MSFT” corresponds to the multi-stage fine-tuning strategy. “{2, 3, 4}” refers to a mixed-precision quantization model with a
combination of 2, 3 and 4 bit quantized layers.

Architecture Bit-width
(bit) Model size Compression

ratio
Voxceleb1-O

EER(%)
Voxceleb1-E

EER(%)
Voxceleb1-H

EER(%)

ResNet34 32 26.66MB - 0.888 1.008 1.850
+KMQAT 4 3.45MB 7.72x 0.957 1.024 1.898
+KMQAT 3 2.63MB 10.11x 1.074 1.128 2.057
+KMQAT 2 1.80MB 14.81x 1.398 1.428 2.566
+KMQAT 1 0.97MB 27.48x 2.133 2.076 3.592

++MP {2, 3, 4} 2.57MB 10.37x 1.026 1.136 2.054
+++MSFT 2.57MB 10.37x 1.015 1.099 1.992
++MP {1, 2, 3, 4} 1.78MB 14.94x 1.367 1.456 2.592
+++MSFT 1.78MB 14.94x 1.388 1.381 2.452

Figure 2: Centroids of different quantization methods with iden-
tical parameter distribution in 3 bit quantization.
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Table 3: The experiment results of compressed/quantized
ResNet34 and other full-precision compact architectures.

Model Size
(MB)

Bit-width
(bit)

Vox1-O
EER(%)

KMQAT-ResNet34(Ours) 3.45 4 0.957
PoT-ResNet34[19](our impl.) 3.45 4 0.973
ADMM-ResNet34[18](our impl.) 5.13 6 1.73
Thin-ResNet-34[30] 5.6 32 2.36
Fast-ResNet-34[22] 5.6 32 2.37

KMQAT-ResNet34(Ours) 1.80 2 1.398
TWN-ResNet34[31](our impl.) 1.80 2 1.473

KMQAT-ResNet34(Ours) 0.97 1 2.133
ResNet34(binary)[16] 0.66 1 5.355
CS-CTCSConv1d[32] 0.96 32 2.62
ECAPA-TDNNLite[10] 1.2 32 3.07

We interpret this performance gap as the diversity of cen-
troids’ selection strategies. The imbalance between quantiza-
tion value density and weight distribution degrades the accu-
racy of model. As shown in Figure 2, linear quantization (e.g.,
ADMM[18]) allocates few centroids for the region nearby 0
where most parameters exist. PoT quantization[19] deploys too
many centroids in the area near 0. As a comparison, KMQAT
takes into account the parameters of all positions in the distribu-
tion. The distribution of KMQAT centroids is relatively close to
the parameter distribution of the pretrained model, thus bring-
ing better performance.

Figure 3: The quantization precision number of each layer of
ResNet34 in mixed precision quantization.
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5.3. Analysis of mixed-precision quantization

We discuss the performance improvement of mixed-precision
quantization in this section. As shown in Figure 3, shallower
convolution layers require higher precision and deeper layers
are less sensible to quantization operation. First several con-
volution layers are critical in the data processing, the lower
precision of initial layers may cause irreversible performance
degradation. Through reasonable allocation of weight precision
and appropriate training recipe, our mixed-precision quantiza-
tion model gains additional improvement.

6. Conclusions
This paper introduces a novel quantization method KMQAT
and mixed-precision quantization for speaker verification sys-
tem. We realized lossless 4 bit quantization of ResNet34. Our
approach outperforms previous model compression and model
quantization methods in terms of model size and accuracy. Ex-
periments on Voxceleb prove that mixed-precision quantization
with multi-stage fine-tuning further improves the performance
of quantization model. In addition, we analyze the advantages
of KMQAT centroids distribution and mixed-precision quanti-
zation algorithm.
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