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Abstract

This work introduces approaches to assessing phrase breaks
in ESL learners’ speech using pre-trained language models
(PLMs) and large language models (LLMs). There are two
tasks: overall assessment of phrase break for a speech clip and
fine-grained assessment of every possible phrase break position.
To leverage NLP models, speech input is first force-aligned with
texts, and then pre-processed into a token sequence, including
words and phrase break information. To utilize PLMs, we pro-
pose a pre-training and fine-tuning pipeline with the processed
tokens. This process includes pre-training with a replaced break
token detection module and fine-tuning with text classification
and sequence labeling. To employ LLMs, we design prompts
for ChatGPT. The experiments show that with the PLMs, the
dependence on labeled training data has been greatly reduced,
and the performance has improved. Meanwhile, we verify that
ChatGPT, a renowned LLM, has potential for further advance-
ment in this area.
Index Terms: phrase break, computer-aided language learning,
ESL speech, pre-trained language models, large language mod-
els

1. Introduction
Proper phrase break is crucial to oral performance [1] and is
always a challenge for English as a Second Language (ESL)
learners. There has been considerable research in computer-
aided language learning (CALL) [2, 3, 4, 5]. As for the phrase
break assessment, there are two main categories: 1) break fea-
ture extraction and modeling [6, 7]. 2) modeling against ref-
erence speech [8, 9]. For example, a method was proposed to
evaluate break by computing similarity between the assessed
speech with utterances from native speakers or Text-to-Speech
(TTS) system [8].

Although modeling against reference speech [8, 9] is an ef-
fective approach to assessing speech performance, some errors
unavoidably occur when it comes to handling diverse phrase
break cases. As shown in Figure 1, the correct phrase break
patterns for the same text are various, and thus it is not to say
that the phrasing is incorrect if it is different with template au-
dios. The previous work fails to consider this fact. Instead,
they model the phrase break like a fixed pattern prediction.
Meanwhile, a large scale of high-quality human-labeled data
is required for traditional methods. However, the subjective la-
beling is costly and the labeling consistency is hard to satisfy
[2, 10, 11]. How to construct robust models with small datasets
is still under research.

*Work performed as an intern in Microsoft Research Asia

Figure 1: Example of diverse phrase break patterns(<br> rep-
resents a phrase break)

Phrase break prediction is a traditional task in the TTS area
[12, 13, 14, 15]. In Futamata’s work [12], a phrase break pre-
diction method is proposed that combines implicit features ex-
tracted from BERT [16] and explicit features extracted from
Bidirectional Long Short-Term Memory (Bi-LSTM) with lin-
guistic features. The goals of phrase break prediction and
phrase break assessment are different, and the second one being
much harder considering the diverse break facts. We can refer
to the idea that the break information can be inferred from input
text, and leverage the power of rising pre-trained language mod-
els (PLMs) [17, 18] and large language models (LLMs) [19].

This paper presents approaches to assessing phrase break
with PLMs and LLMs. In particular, there are two sub-tasks:
assessment of phrase break for a speech and fine-grained as-
sessment of each break position. To adopt those NLP models,
each speech is processed into a token sequence with text-speech
forced alignment [20, 21, 22], referencing Figure 2. The token
sequence consists of words and associated phrase break tokens
(break duration information for each between-words interval).

To adopt the pre-training models, a self-supervised replaced
break token detection strategy is proposed. Each break token
from the original sample has 15% chance of being replaced by
other break tokens. Then, a discriminator is trained with aug-
mented data riding on BERT [16] to identify whether the to-
ken sequence is edited. In the fine-tuning stage, the overall as-
sessment and fine-grained assessment are fine-tuned with text
classification and token classification, respectively. Addition-
ally, by providing suitable prompts, LLMs can perform well on
many NLP tasks and adapt for specific use-cases with just a few
task examples [19, 23, 24]. Therefore, we design prompts and
investigate the zero-shot and few-shot learning [25, 26, 27] se-
tups with ChatGPT [28].

The main contributions are: first, this is pioneering work
to explore the use of PLMs and LLMs for speech assessment.
The experimental results demonstrate the possibility of using
language models to perform speech evaluation in specific tasks.
Second, this work takes diverse phrasing patterns into consider-
ation to construct a more precise assessment.
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Figure 2: Overview of the data pre-processing. The speech-text forced alignment tool recognizes word boundaries and the duration
between adjacent words. Then, the token sequence is obtained by converting the duration to break tokens with the mapping in Table 1 .

2. Data Pre-processing
2.1. Task definition

We use two tasks to demonstrate how PLMs and LLMs can be
applied into assessing phrase break.

One is predicting a rank r for a test speech to indicate its
overall performance on phrase break. The other one is that
given a speech S, consisting n words, predict a rank ri for each
interval bi between two words on whether the phrase break is
appropriate, including whether an existing break is appropriate
and whether an expected break is missed.

2.2. Pre-processing

To leverage the power of PLMs and LLMs, the speech clips
are first converted to a token sequence with speech-text forced
alignment.

As shown in Figure 2, speech-text forced alignment is
used to recognize the phrase break and duration between ev-
ery pair of adjacent words wi and wi+1. Based upon the
statistical information and linguists’ assessment, the phrase
breaks are categorized into four types, as shown in Table 1.
A speech utterance is then tokenized into a token sequence
T : {w0, b0, w1, ..., wi, bi, wi+1, ..., wn}, including words and
phrase break tokens.

3. Approach
3.1. Pre-trained Language Models for Break Assessment

Replaced Break Token Detection We introduce a pre-training
approach named replaced break token detection. As shown in
Figure 3, speech recordings by native speakers from TTS corpus
are collected as original samples because TTS recordings have
good performance in phrase break. Then, each sample is ran-
domly corrupted several times with the strategy that each break
token has 15% chance to be replaced with other kinds of break
tokens. 15% is a hyper-parameter settled by pre-experiments.
The proportions of different types of breaks after the random
corruptions with a 15% change and the real speech by non-
native speakers are very similar.

The pre-training is from BERT as it is trained on a large
scale of texts and learns contextual relations between words (or
sub-words) [16]. A discriminator is trained with cross-entropy
loss on the augmented data to predict whether the input se-
quence has been corrupted. The trained model is called Break-
BERT for convenience.

Downstream Tasks The overall assessment task is treated
as a sequence classification task. The model predicts a rank r

Table 1: The definition of break tokens

Type Duration Comment
br0 (0, 10ms] No break
br1 (10ms, 50ms] Slight / Optional break
br2 (50ms, 200ms] Break
br3 (200ms, +∞) Long break

for a token sequence, r ∈ R. The model consists of the head of
the pre-trained model and a classifier on top, and is trained with
cross-entropy loss.

The fine-grained assessment is treated as a sequence label-
ing task. An ri ∈ R is expected to be assigned to bi. There is a
token classification head on top of the hidden-state output from
pre-trained model. It is also trained with a cross-entropy loss
function.

3.2. Large Language Models for Break Assessment

We investigate the potential of ChatGPT for phrase break as-
sessment in zero-shot and few-shot scenarios.

Prompts By taking into account the crucial impact that
prompting has on output from generative models, we clarify our
problem according to section 2.1, input scoring rubric that an-
notators adopt, and then standardize input and output formats
for our task.

The input is formatted as T in section 2.2. The output is
formatted as rank r, r ∈ R and inappropriate break position
set P : {p1, ..., pj , ...pn}, pj = wibiwi+1 represents that the
phrase break bi between word wi and word wi+1 is inappropri-
ate.

Zero Shot or Few Shot Learning We try zero-shot and
few-shot learning to explore the potential of LLMs in speech
phrase break assessment. For the zero-shot scenario, ChatGPT
responses without specifically training on any data. A zero-shot
example of question prompt and response is shown in Figure 4.
For the few-shot learning, a few examples are provided as con-
text information to enable the model be adapted for annotated
cases. Details for case selection in few-shot learning will be
discussed in the next section.

4. Experiments
4.1. Corpora

We collected 800 audio samples from different Chinese ESL
learners. Then, two linguists are invited to assess them with
overall performance on phrase break and each individual phrase
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Figure 3: An overview of the replaced break token detection pre-training process. Part (a) describes an example of data corruption
where each break token in the original token sequence has 15% chance of being replaced with other tokens. Part (b) is the pre-training
stage where a discriminator is trained to distinguish original or corrupted data.

Figure 4: An example of prompt and response from ChatGPT.

break ranging from 1 (Poor), 2 (Fair), and 3 (Great). If two
experts’ opinions are inconsistent, an extra linguist will in-
tervene and do the final scoring. The statistics of collected
corpus are listed in Table 2. All data is publicly available
for research on https://github.com/Chris0King/
phrasing-break-assessment.

Table 2: Statistics of downstream datasets.

Dataset Poor Fair Great Total
Overall 21 136 643 800

Fine-grained 129 644 10797 11570

4.2. Pre-training Setups

The data for the downstream task was obtained from record-
ings of 800 Chinese students during ”read-after-me” exercises.
Thus, we utilized the TTS corpus, a speech dataset from reading
scenarios, for pre-training purposes. The pre-training was per-

formed using the LJ Speech dataset [29], which is commonly
known for its good phrase breaks and diverse break patterns.
There are 22.5 hours of speech recordings in the training set
and 1 hour in the test set, containing 192k words and 8k words
respectively.

In data corruption, the ratio between the corrupted sam-
ples and the original samples is 3:1, i.e. for each original sam-
ple, three random corrupted samples are augmented. The pre-
training begins from BERTBASE, and a simple linear classifier
is added on the top. It is trained with a batch size of 64 for 3
epochs over the dataset. The maximum sequence length is set
to 128. We used back propagation and Adam optimizer with a
learning rate of 1e-4. After the pre-training, the binary classi-
fication results of Break-BERT achieve 83.9% in accuracy and
89.7% in f-score.

4.3. Experimental Setup

Baselines Bi-LSTM+Linear Layer and Bi-LSTM+CRF (Con-
ditional Random Field) [30] are set as baselines for overall and
fine-grained assessment, separately. We apply Bi-LSTM as a
backbone considering it still works well in a relatively small
dataset. The hidden layer size is set to 1024. Meanwhile, a di-
rect fine-tuning with downstream data on BERT is conducted
to verify the validity of the proposed pre-training process. The
baseline models take the identical token sequences by the BERT
tokenizer.

We also adopt the Against-TTS method [8] as a baseline
and tag the output break similarity score [0, 0.3), [0.3, 0.7), [0.7,
1.0] as poor, fair, great, separately. The adopted TTS system is
from Microsoft Cognitive Service en-US-AriaNeural 1.

Meanwhile, ChatGPT was asked to assess the phrase break
from 1-3 defined in 4.1 and list all inappropriate breaks. For
few-shot learning, we evaluate each example in the test set by
randomly selecting four samples from the corresponding train-
ing set as context information to maintain the similar distribu-
tion. The prompt and few-shot learning strategy are determined
through preliminary experiments. All examples are tested on
text-chatdavinci-002 (using OpenAI’s playground). The tem-
perature is set 0 to ensure a consistent prediction.

Cross-validation We apply five-fold cross-validation to
avoid instability of sampling and report the mean and standard
deviation of experiments.

1https://learn.microsoft.com/en-us/azure/
cognitive-services/
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Table 3: Performance of overall and fine-grained assessment models. ’#’ stands for ’Fine-tune’ and ’w/’ stands for ’with’.

Assessment Model Metric avg.(std)

Acc. F-Score(weighted) F-Score(macro)

Overall

Bi-LSTM 80.2(6.4) 76.4(9.6) 39.2(8.1)
Against-TTS 54.4(9.9) 61.1(7.1) 36.3(5.6)

#BERT 80.4(6.5) 77.9(7.0) 40.9(7.1)
#Break-BERT 82.5(5.0) 81.7(5.7) 52.3(10.5)

ChatGPT w/ Zero-shot Learning 55.6(6.2) 61.6(4.9) 40.6(3.7)
ChatGPT w/ Few-shot Learning 65.8(5.8) 70.5(4.8) 47.3(4.0)

Fine-grained

Bi-LSTM 92.5(3.9) 90.1(5.6) 39.9(3.7)
Against-TTS 70.9(2.6) 78.6(4.0) 31.1(1.5)

#BERT 91.8(4.1) 89.0(5.8) 39.5(4.1)
#Break-BERT 92.8(3.1) 91.6(4.0) 44.3(2.5)

Table 4: Comparing the performance of #Break-Bert and ChatGPT on fine-grained assessment, category 1 (Poor) and category 2 (Fair)
are mapped to inappropriate break, and category 3 (Great) is mapped to appropriate break.

#Break-BERT ChatGPT w/ Zero-shot ChatGPT w/ Few-shot
Category Precision Recall Precision Recall Precision Recall

Poor and Fair 60.1% 33.7% 26.5% 31.4% 26.9% 32.6%
Great 94.8% 98.4% 94.4% 94.4% 94.5% 93.1%

4.4. Results

Accuracy, weighted f-score and macro f-score are taken as met-
rics [10]. As shown in Table 3 and Table 4, compared with Bi-
LSTM, Against-TTS, fine-tuning on BERT and ChatGPT, the
proposed pre-training fine-tuning greatly improves all metrics.
The knowledge learned from the pre-training stage efficiently
enhances model performance. It is worth mentioning that the
Against-TTS system performs much worse than the proposed
approach and ChatGPT. More discussions are included in the
next section.

5. Discussion
5.1. Influence of Pre-training

The pre-training process takes TTS human recordings as correct
samples, where multiple phrase break patterns exist. After a se-
ries of random corruptions, the augmented samples are likely
to be incorrect in phrasing. After the pre-training on original
and constructed incorrect patterns, the discriminator has learned
general linguistic patterns and phrase break information through
self-supervised learning. The experiments verified the assump-
tions. The proposed model yields better results. The knowledge
learned from pre-training benefits downstream tasks.

5.2. How Diverse Breaks are Handled

The experimental results verified Against-TTS approach’s lim-
its on handling multiple possible phrase breaks. As shown in
Table 5, there are sharp drops of the recall of category 3 (Great)
and the precision of category 1 (Poor), while the precision of
category 3 (Great) and the recall of category 1 (Poor) are kept.
For a test speech, if it shows a different phrase break pattern
with reference audio, it tends to be classified as poor even if it
is correct. When it shows a similar phrase break pattern to the
template, it is highly possible to be a correct phrasing. This ex-
plains the high precision, low recall for category 3 (Great), as
well as the high recall, low precision of category 1 (Poor).

Table 5: Performance analysis on different categories.

Against-TTS #Break-BERT
Category Precision Recall Precision Recall

Poor 4.3% 28.6% 50.0% 14.3%
Fair 26.7% 46.3% 49.2% 47.8%

Great 87.3% 57.5% 89.7% 92.4%

5.3. LLMs for Break Assessment

According to experiments, we noticed that the ChatGPT model
with zero-shot learning exhibits partial understanding of punc-
tuation breaks. However, it tends to overlook the slight pauses
between semantic groups, such as the initiation of a clause or
phrase. Despite some improvement with few-shot learning set-
ting, the ChatGPT model still struggles to adequately address
the breaks between semantic groups and manifests unstable per-
formance when attempting to rectify incorrect breaks.

While not reaching the state-of-the-art performance, the po-
tential of ChatGPT in phrase break assessment is noteworthy.
After few-shot learning, all metrics improve significantly in
overall assessment task. We believe that with further optimiza-
tion in prompt design, ChatGPT has the potential to demon-
strate greater power in speech assessment.

6. Conclusions
This work presents new approaches to tackling ESL speech
phrase break assessment with pre-trained language models
(PLMs) and large language models (LLMs). The introduction
of PLMs greatly minimizes the requirements for collecting la-
beled data, and the proposed self-supervised learning can han-
dle multiple possible phrase break patterns of the same text.
Also, we verify that ChatGPT, a classical and renowned LLM,
has potential for further advancement in this area. In the future,
leveraging PLMs and LLMs to solve other prosody assessment
tasks, like intonation and stress, is well worth researching.
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