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Abstract
Convolutional recurrent networks (CRN) that combine a con-
volutional encoder-decoder (CED) structure with a recurrent
structure have shown promising results in monaural speech en-
hancement. However, the commonly used short-time Fourier
transform fails to balance the needs of frequency and time res-
olution effectively, which is crucial for accurate speech estima-
tion. To address this issue, we propose MFT-CRN, a multi-
scale short-time Fourier transform fusion model. We process
the input speech signal through short-time Fourier transforms
with different window functions, and add them layer by layer in
the encoder and decoder of the network to achieve feature fu-
sion with different window functions, effectively balancing fre-
quency and temporal resolution. Comprehensive experiments
on the WSJ0 dataset show that MFT-CRN significantly outper-
forms the method using only a single window function in terms
of short-time intelligibility and perceptual evaluation of speech
quality.
Index Terms: monaural speech enhancement, frequency do-
main, short-time fourier transform,multi-scale fusion

1. Introduction
With the great popularity of COVID-19, people’s working style
has changed from an offline office to an online office, and video
conferencing and teleconferencing have become an indispens-
able tool. However, there are always various kinds of noise in
the home office, such as the noise of children, the sound of ren-
ovation downstairs, the sound of car sirens, and so on. All of
these can seriously affect our work and communication effi-
ciency, and pose new challenges for voice enhancement.

Speech enhancement is widely used in scenarios such as
voice communication systems, speech recognition, and hearing
aids. According to the different signals processed by speech
enhancement, it can be divided into monaural speech enhance-
ment and multichannel speech enhancement. Monaural speech
data is easier to obtain compared to multichannel data, and it
has low hardware requirements and a lower acquisition cost, so
monaural speech enhancement technology is more widely used.
Earlier, digital signal processing techniques were mainly used
to cope with speech enhancement tasks, but such methods usu-
ally assume that noise is a smooth invariant signal, an assump-
tion that is clearly not valid in realistic situations. Therefore, the
performance of speech enhancement algorithms based on tradi-
tional digital signal processing is limited.With the development
of deep learning techniques, researchers have started to explore
deep learning-based speech enhancement methods. Thanks to
the strong learning ability, wide coverage, and good generaliza-
tion of deep learning, speech enhancement based on deep learn-
ing has surpassed traditional digital signal processing methods

at this stage.

With the advancement of deep learning, many researchers
regard speech enhancement as a supervised learning problem
[1] [2] and have achieved outstanding performance. In [1] [3],
the author investigates the issue of noise reduction in the short-
time Fourier transform (STFT) domain. The STFT approach
aligns more closely with human auditory perception and makes
the speech characteristics clearer. The concept of Convolutional
Encoder-Decoder (CED) for speech enhancement was first in-
troduced in [4]. They proposed a Redundant CED network
(RCED) made up of repeated convolution, batch normalization
(BN) [5], and ReLU activation [6] layers. The RCED architec-
ture also includes skip connections to aid optimization. These
skip connections link each layer in the encoder to its corre-
sponding layer in the decoder. Many subsequent studies have
adopted the CED architecture [7–16] . Despite the significant
achievements of deep learning in speech enhancement technol-
ogy, there are still numerous challenges in input signal feature
extraction and utilization.

For instance, in the frequency domain, research often
involves Fourier transforms, and time-frequency analysis is
achieved by adding a window function. However, the Fourier
transform employs a fixed window function. Once this func-
tion is selected, its shape remains unchanged, and the resolu-
tion of the Fourier transform is determined. To alter the resolu-
tion, a different window function must be chosen. The Fourier
transform is useful for analyzing piecewise stationary signals
or approximating stationary signals, but it cannot handle non-
stationary signals.The short-time Fourier transform [17] can
solve non-stationary signals. When the signal changes rapidly,
the window function needs to have a higher time resolution,
while for signals that change gently, with mostly low-frequency
components, the window function requires a higher frequency
resolution. In this paper, to address both frequency and time res-
olution, we present a novel multi-scale short-time Fourier trans-
form fusion algorithm, MFT-CRN, for the first time. This algo-
rithm obtains multi-scale short-time Fourier transform features
from input signals using short-time Fourier transforms with dif-
ferent window functions, then integrates the features into the
encoder and decoder of the network layer by layer. The ex-
perimental results demonstrate that this method delivers good
results on the WSJ0 SI-84 data sets.

The rest of the paper is structured as follows. Section 2 de-
scribes the proposed MFT-CRN structure. Section 3 outlines the
experimental setup. Section 4 presents the experimental results,
and Section 5 summarizes the paper.
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Figure 1: Schematic diagram of the proposed MFT-CRN.

2. Model Description
2.1. Overview

CRN, which was first proposed in [7], is essentially a reg-
ular CED architecture that employs two LSTM [18] layers
in between the encoder and decoder. LSTMs are specifi-
cally used here to model temporal dependencies. The en-
coder contains five 2D convolutional blocks, which serve to
extract high-dimensional features from the input or reduce its
resolution. Subsequently, the decoder reconstructs the low-
resolution features to the scale of the original input, resulting
in a symmetric design for the codec’s structure. Specifically,
the Conv2D module of the codec consists of a series of convo-
lutional/deconvolutional layers, as well as BN [5] and activation
functions. Skip-connections are used to facilitate the transfer of
gradients between codecs.

Figure 1 illustrates a schematic diagram of the proposed
MTF-CRN, which follows an encoder-decoder scheme and uti-
lizes a sequence of downsampling and upsampling blocks to
make predictions. As shown in Figure 1, the proposed MTF-
CRN comprises an encoder part, a fusion part, a multi-scale
Fourier transform encoder part, and a decoder part. In this
study, we used the short-time Fourier transform (STFT) mag-
nitude spectrum of noisy speech in 321 dimensions as the input
features of the encoder, and clean speech as the training target.
The multi-scale Fourier transform encoder uses the STFT mag-
nitude spectrum of noisy speech in dimensions 161, 81, 41, 21,
11.

The encoder is designed to use magnitude tiles as input
to convolutional layers, and each layer of the encoder is fol-
lowed by batch normalization [5] and exponential linear unit
(ELU) [6]. A multi-scale Fourier encoder is used to process
the input embedding after the short-time Fourier transform with
different window functions through multiple layers of convo-
lutional blocks. It is important to note that the dimensionality
of the input feature vector after a convolutional layer must be
the same as the corresponding layer-wise output feature vector,
since these two vectors go through the fusion part of the en-
coding stage at each encoding layer. The encoder’s output fea-
tures are then fed into two LSTM blocks to aggregate temporal

context. The decoder part is reconstructed by deconvolution,
followed by batch normalization and ELU again.

2.2. Multi-scale Fourier Transform Encoder

The main purpose of the multi-scale Fourier transform encoder
is to align the time dimension features of different window func-
tions. It has the same convolutional layer structure as the en-
coder, with a BN layer and an ELU layer following each con-
volutional layer, except for the difference in the parameters of
the convolutional kernel. The kernel size is set to (3, 2), and the
time dimension is downsampled to achieve alignment of the en-
coder and multi-scale encoder features in the time dimension,
which are then fused into the network. The number of multi-
scale encoder layers is increased based on the gap in the time
dimension of the input features from the encoder, where K rep-
resents the number of multi-scale encoder layers.

Figure 2: Schematic diagram of Multi-scale Fourier Transform
Encoder.

2.3. Parameters Setting

The encoder has six layers, each consisting of a convolutional
layer followed by batch normalization and ELU nonlinearity.
Except for the first layer, each layer adds a module to change the
shape of the feature representation for different window func-
tions. The input size of the model is [batch size, 1, seq len,
features]. The encoder down-samples the input layer by layer,
and the number of channels is amplified by the same multiple.
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The number of channels is [1, 8, 16, 32, 64, 128, 256] in turn,
and the newly added multi-scale Fourier transform encoder of
each layer changes different windows. The shape of the feature
function’s window is changed, and the number of channels is
changed to [8, 16, 32, 32, 32] in turn. The window length used
by the multi-scale Fourier transform is [640, 320, 160, 80, 40,
20], and the window shift is [320, 160, 80, 40, 20, 10], respec-
tively. Selecting these scales minimizes the number of doown-
sampling operations, which in turn reduces information loss.
The output of the previous layer and the features of different
window functions are connected along the channel dimension
and sent to the convolutional layer for processing. The convo-
lution kernel and stride are set to (2, 3) and (1, 2), respectively.
The final output size of the encoder is [batch size, 256, seq len,
4]. The output is fed into an LSTM layer to extract long-term
relationships of frequency-domain features separately.

The decoder also consists of six layers. Each layer receives
skip connections from the corresponding layer of the encoder,
in addition to features from different window functions. These
skip connections are connected with the output of the previous
layer along the channel axis. The decoder uses deconvolution
to double the feature dimension layer by layer, ultimately re-
constructing the signal to its original size. The final layer of
the decoder boosts the signal into one channel, which is then
converted to speech using an overlap-add operation.

Table 1: Architecture of backbone of our proposed MFT-CRN.
Here T denotes the number of time frames in the STFT magni-
tude spectrum.

layername input size hyperparameters output size
reshape 1 T × 321 - 1 × T × 321
conv2d 1 1 × T × 321 2 × 3 , (1 , 2) , 8 8 × T × 160
conv2d 2 16 × T × 160 2 × 3 , (1 , 2) , 16 16 × T × 79
conv2d 3 32 × T × 79 2 × 3 , (1 , 2) , 32 32 × T × 39
conv2d 4 64 × T × 39 2 × 3 , (1 , 2) , 64 64 × T × 19
conv2d 5 96 × T × 19 2 × 3 , (1 , 2) , 128 128 × T × 9
conv2d 6 160 × T × 9 2 × 3 , (1 , 2) , 256 256 × T × 4
reshape 2 256 × T × 4 - T × 1024

lstm 1 T × 1024 1024 T × 1024
lstm 2 T × 1024 1024 T × 1024

reshape 3 T × 1024 - 256 × T × 4
deconv2d 6 512 × T × 4 2 × 3 , (1 , 2) , 128 128 × T × 9
deconv2d 5 288 × T × 9 2 × 3 , (1 , 2) , 64 64 × T × 19
deconv2d 4 160 × T × 19 2 × 3 , (1 , 2) , 32 32 × T × 39
deconv2d 3 96 × T × 39 2 × 3 , (1 , 2) , 16 16 × T × 79
deconv2d 2 48 × T × 79 2 × 3 , (1 , 2) , 8 8 × T × 160
deconv2d 1 24 × T × 160 2 × 3 , (1 , 2) , 1 1 × T × 321
reshape 4 1 × T × 321 - T × 321

Table 1 provides a detailed description of the backbone of
our proposed network structure. The input and output sizes
of each layer are specified in the format of featureMaps ×
timeSteps × frequencyChannels. The hyperparameters of the
layers are given in the format (kernelSize, strides, outChannels).
For all convolution and deconvolution operations, we apply zero
padding in the time direction but not in the frequency direction.
For causal convolution, we use a kernel size of 2 × 3 (time ×
frequency). It’s worth noting that the number of feature maps in
each decoder layer is more than doubled by the skip connections
and the skip connections of the multi-scale Fourier transform
encoder.

Table 2 provides a more detailed description of our pro-

posed multi-scale Fourier transform encoder. The input and out-
put sizes of each layer are specified in the format of featureMaps
× timeSteps × frequencyChannels. The hyperparameters of the
layers are given in the format (kernelSize, strides, outChannels).
For all convolution and deconvolution operations, we apply zero
padding in the frequency direction but not in the time direction.
For causal convolution, we use a kernel size of 3 × 2 (time ×
frequency).

Table 2: Architecture of Multi-scale Fourier Transform Encoder
of our proposed MFT-CRN. Here T denotes the number of time
frames in the STFT magnitude spectrum.

layername input size hyperparameters output size
conv320 1 1 × 2T × 161 3 × 2 , (2 , 1) , 8 8 × T × 160
conv160 1 1 × 4T × 81 3 × 2 , (2 , 1) , 8 8 × 2T × 80
conv160 2 8 × 2T × 80 3 × 2 , (2 , 1) , 16 16 × T × 79
conv80 1 1 × 8T × 41 3 × 2 , (2 , 1) , 8 8 × 4T × 40
conv80 2 8 × 4T × 40 3 × 2 , (2 , 1) , 16 16 × 2T × 40
conv80 3 16 × 2T × 40 3 × 2 , (2 , 1) , 32 32 × T × 39
conv40 1 1 × 16T × 21 3 × 2 , (2 , 1) , 4 4 × 8T × 20
conv40 2 4 × 8T × 20 3 × 2 , (2 , 1) , 8 8 × 4T × 20
conv40 3 8 × 4T × 20 3 × 2 , (2 , 1) , 16 16 × 2T × 20
conv40 4 16 × 2T × 20 3 × 2 , (2 , 1) , 32 32 × T × 19
conv20 1 1 × 32T × 11 3 × 2 , (2 , 1) , 2 2 × 16T × 10
conv20 2 2 × 16T × 10 3 × 2 , (2 , 1) , 4 4 × 8T × 10
conv20 3 4 × 8T × 10 3 × 2 , (2 , 1) , 8 8 × 4T × 10
conv20 4 8 × 4T × 10 3 × 2 , (2 , 1) , 16 16 × 2T × 10
conv20 5 16 × 2T × 9 3 × 2 , (2 , 1) , 32 32 × T × 9

2.4. Loss Function

In our MFT-CRN, we use MSE to train the MFT-CRN until con-
vergence. The loss function value only includes the magnitude
spread estimate, expressed as:

LMag = |||X̃| − |S| ||2F (1)

where LMag denotes the loss function of magnitude.|S| denotes
the target spectral magnitude, |X̃| denotes the estimate spectral
magnitude.In this paper, only the magnitude spectrum with a
window function of 640 is used as a target, and the window
functions of other scales are not used as targets.

3. Experiments
3.1. Datasets

In this study, we evaluated the performance of our proposed
model on the WSJ0 SI-84 dataset [7] which includes 7138 ut-
terances from 83 speakers (42 males and 41 females). We
used the utterances of 77 speakers for training and the rest
for test. We used 10000 non-speech sounds from a sound
effect library (available at http://www.sound-ideas.com) [13]
and generated 320000 and 3000 utterances at the SNRs uni-
formly sampled from -5dB, -4dB, -3dB, -2dB, -1dB, -0dB for
training and validation, respectively. For the test set, two
noises (babble and cafeteria) from Auditec CD (available at
http://www.auditec.com) are used to generate 900 mixtures at
each SNR of -5dB, 0dB, and 5dB.

3.2. System Settings

All utterances are 16kHz samples. Frames were extracted us-
ing rectangular windows and Hamming windows of sizes 40ms,
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Table 3: STOI and PESQ comparisons between different window functions of CRN.

Metrics STOI PESQ MACs
(G/s)Test Noise Babble Cafeteria Babble Cafeteria

Test SNR -5db 0db 5db AVG -5db 0db 5db AVG -5db 0db 5db AVG -5db 0db 5db AVG
Mixture 59.04 71.95 83.82 71.60 57.70 70.83 83.16 70.56 1.49 1.77 2.06 1.77 1.34 1.69 2.04 1.69 -
CRN80 73.38 84.99 91.89 83.42 70.55 83.07 90.76 81.46 1.68 2.16 2.56 2.13 1.68 2.16 2.56 2.13 7.73
CRN160 73.98 85.55 92.16 83.89 70.80 83.67 91.04 81.83 1.71 2.21 2.62 2.18 1.73 2.21 2.61 2.18 4.84
CRN320 75.46 86.87 92.81 85.05 73.56 85.30 91.99 83.62 1.84 2.37 2.76 2.32 1.87 2.35 2.74 2.32 2.56
CRN640 75.46 87.27 93.10 85.28 74.46 86.05 92.33 84.28 1.93 2.48 2.86 2.42 1.99 2.46 2.82 2.42 1.30

CRN1280 73.01 85.73 92.35 83.70 72.99 84.75 91.45 83.06 1.84 2.38 2.74 2.32 1.95 2.40 2.73 2.36 0.67

Table 4: STOI and PESQ comparisons between MFT-CRN and the baseline models.

Metrics STOI PESQ
Test Noise Babble Cafeteria Babble Cafeteria
Test SNR -5db 0db 5db AVG -5db 0db 5db AVG -5db 0db 5db AVG -5db 0db 5db AVG
Mixture 59.04 71.95 83.82 71.60 57.70 70.83 83.16 70.56 1.49 1.77 2.06 1.77 1.34 1.69 2.04 1.69

CRN 75.46 87.27 93.10 85.28 74.46 86.05 92.33 84.28 1.93 2.48 2.86 2.42 1.99 2.46 2.82 2.42
MFT-CRN 76.99 88.06 93.53 86.19 75.61 86.81 92.76 85.06 1.98 2.53 2.92 2.48 2.03 2.51 2.88 2.47

w/o Decoder-MFT 76.79 88.04 93.50 86.11 75.48 86.75 92.74 84.99 1.97 2.52 2.91 2.47 2.02 2.51 2.87 2.47

Table 5: Parameter efficiency comparison of different models.

Models Para(M) STOI PESQ
Noisy - 58.37 1.42
CRN 17.58 74.96 1.96

MFT-CRN 17.63 76.30 2.01

20ms, 10ms, 5ms, 2.5ms, 1.25ms, respectively. The overlap is
50%. The models are trained using the Adam optimizer [19]
with a learning rate of 0.001. The batch size is set to 32 at the ut-
terance level. Note that if the speech is longer than 7 seconds, a
random 7-second segment will be cut from the speech. Smaller
utterances are zero-padded to match the size of the largest utter-
ance in the batch.

3.3. Evaluate Metrics

Performance is evaluated by two objective metrics: short-time
objective intelligibility (STOI) [20] and perceptual evaluation
of speech quality (PESQ) [21]. STOI values usually range from
0 to 1 and can be roughly interpreted as a correct percentage.
PESQ values range from -0.5 to 4.5. For the STOI and PESQ
metrics, higher numbers indicate better performance.

4. Result and Analysis
4.1. Ablation study

We first conducted an ablation study to investigate the effect
of different window functions on the network performance,
with window lengths of [1280, 640, 320, 160, 80] and window
shifts of [640, 320, 160, 80, 40], with names corresponding to
CRN1280,CRN640,CRN320,CRN160,CRN80. And the quan-
titative results are shown in Table 3 , we can obtain the fol-
lowing observations. First, in the comparison of CRN320 and
CRN1280, the difference between the two focusing on the fre-
quency dimension and the time dimension is not large. This
reveals that both frequency and time dimensions are effective in
improving speech quality. Secondly, in the case of low window
length, the low metrics are due to the low frequency resolution,
which is not conducive to estimating speech in the frequency
domain environment. Thirdly, CRN640 has the best overall
result because it is the closest in frequency and temporal de-

mension in the case of training samples of 7s speech, compro-
mising frequency and temporal resolution. The best results are
achieved on a single window function.Therefore, 640 is used as
the window length for CRN in the following experiments.

4.2. Objective Comparisons

Initially, we compared our multi-scale Fourier transform fusion
model with the STOI and PESQ baselines, and the results, dis-
played in Table 4, show the best outcomes in bold. Across all
SNR levels and noise types, MTF-CRN outperformed all base-
lines in terms of STOI, and compared to CRN, babble and cafe-
teria noise showed average improvements of 0.91% and 0.78%,
respectively. For PESQ, the average improvement was 0.06 and
0.05 for babble and cafeteria noise, respectively.

We also conducted a comparison between our model and
CRN in a -5dB environment, as presented in Table 5. Although
the multi-scale Fourier transform fusion algorithm added a few
parameters, the significant improvement in the low signal-to-
noise ratio and the manageable increase in parameter count re-
mained within an acceptable range.

Overall, our proposed multi-scale Fourier transform fusion
model outperforms the Fourier transform model based on a sin-
gle window function. Our results highlight the critical impor-
tance of considering information in both time and frequency
dimensions to improve model performance.

5. Conclusions
In this study, we propose a novel multi-scale Fourier transform
fusion system that considers both the time and frequency di-
mensions. Our results demonstrate that the proposed model out-
performs the baseline models in terms of objective intelligibil-
ity and quality scores. We attribute the excellent performance
of our model to the fact that features obtained from different
window functions have distinct frequency and time dimensions:
larger window functions provide richer frequency information,
while smaller window functions provide richer time informa-
tion. By fusing the features of different window functions, the
proposed model can combine diverse learning focuses to obtain
richer features.
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