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Abstract
Automatic Mean Opinion Score (MOS) prediction is crucial to
evaluate the perceptual quality of the synthetic speech. While
recent approaches using pre-trained self-supervised learning
(SSL) models have shown promising results, they only partly
address the data scarcity issue for the feature extractor. This
leaves the data scarcity issue for the decoder unresolved and
leading to suboptimal performance. To address this challenge,
we propose a retrieval-augmented MOS prediction method,
dubbed RAMP, to enhance the decoder’s ability against the data
scarcity issue. A fusing network is also proposed to dynami-
cally adjust the retrieval scope for each instance and the fusion
weights based on the predictive confidence. Experimental re-
sults show that our proposed method outperforms the existing
methods in multiple scenarios.
Index Terms: MOS prediction, speech assessment, retrieval-
augmented method, confidence-based dynamic weighting

1. Introduction
Evaluation of synthetic speech typically involves the use of ob-
jective and subjective methods. Objective methods, such as Mel
Cepstral Distortion (MCD) and F0 Frame Error (FFE), require
reference audio, making them impractical or even impossible
to use in scenarios where reference audio is unavailable [1].
On the other hand, subjective methods, such as Mean Opin-
ion Score (MOS), rely on listening tests conducted by crowd-
sourced listeners, which can be time and resource consuming.

Automatic MOS prediction using machine learning [2, 3, 4]
has recently gained popularity as it allows for quality evalua-
tion that matches human perception with low time and resource
cost. However, training of such methods still relies on manu-
ally scored data and often suffers from data scarcity due to lim-
ited budgets. To alleviate this problem, self-supervised learning
(SSL) models [5, 6] trained on large-scale unlabeled data are
employed as the feature extractor, followed by a downstream
MOS prediction decoder trained on small-scale data with la-
beled MOS scores [7, 8]. Recent works based on this SSL-based
structure [9, 10, 11] have outperformed the earlier works trained
from scratch [2, 12, 13] in the MOS prediction tasks.

Existing SSL-based frameworks, as depicted in Figure 1,
mainly focus on improving the feature extractor based on the
help of large-scale pre-training corpora to obtain better rep-
resentations. To name a few, Yang et al. [11] fuse seven
pre-trained SSL models, as both the data and model config-
urations used for pre-training can impact SSL model perfor-
mance. Tseng et al. [9] demonstrate that domain adaptive pre-
training (DAPT) can reduce domain mismatch between speech
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Figure 1: The SSL-based framework (bottom left) improves the
feature extractor with an SSL model and the proposed frame-
work (bottom right) augments the decoder by introducing a non-
parametric model and a fusing network.

in the pre-training corpus and fine-tuning MOS corpus. Saeki
et al. [10] concatenate as much information as possible from
phonemes, raters, and other sources with the SSL representa-
tion vector. Vioni et al. [14] include prosodic and linguistic
features as inputs to improve system performance.

However, the decoder, which decodes the features into
scores, is only trained with the MOS dataset. The data scarcity
issue for the decoder remains unsolved, leading to subopti-
mal performance. A few works attempt to improve the neu-
ral decoder. Tseng et al. [9] replace the linear layer of the
decoder with a DNN, but their results indicate that increasing
the decoder’s parameters does not necessarily improve perfor-
mance. Chen et al. [15] design multi-task heads to predict both
quality and intelligibility scores simultaneously. In summary,
these neural decoders can be classified as parametric methods
by learning the mapping from representations to scores, which
generally require large-scale labeled data to achieve good gen-
eralization ability and tend to suffer difficulties in adapting to
new domains with distribution shifts.

Given the powerful SSL-based feature extractor and the
weak decoder, we share a similar hypothesis with kNN-LM
[16] that the representation learning is easier than the predic-
tion. Thus, we propose a retrieval-augmented MOS prediction
method, dubbed RAMP, to enhance the decoder for address-
ing the data scarcity issue. Specifically, as shown in Figure 1,
we augment the decoder of the SSL-based framework by lin-
early interpolating its prediction score with the k-nearest neigh-
bors (kNN) model. The kNN model, which is a non-parametric
method, not only is good at memorizing rare patterns [17] but
also handles cross-domain issues in a flexible way [16].

The fusion of the parametric and non-parametric methods
has been successfully utilized in tasks such as language mod-
eling [16, 18] and machine translation [19]. However, they
combine the two methods by static weights. We argue that the
predictive ability of parametric methods varies for different in-
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Figure 2: The illustration of the system flow at the inference time.

stances due to the uneven distribution of data in the dataset. For
instance, the model may be more confident in predicting scores
for some instances than for others. In such cases, less help from
non-parametric methods may be needed. To this end, we pro-
pose a confidence-based dynamic weighting scheme to balance
the outcomes of the two methods. Furthermore, the number
of retrievals of the kNN model is preset and sensitive to noise
[20, 21]. To improve the robustness of the model, we automat-
ically predict the importance of the number of retrievals and
average the scores for different numbers.

The main contributions of this work are threefold:
• We propose RAMP, a novel retrieval-augmented MOS pre-

diction method, to enhance the neural decoder in SSL-based
frameworks.

• We design a fusing network to dynamically adjust the re-
trieval scope for each instance and the fusion weights based
on the predictive confidence.

• We have demonstrated the effectiveness of the method
through extensive comparative and ablation experiments.

2. The System Overview
The training process of our system consists of two stages. In
the first training stage, we fine-tune the SSL-based model (i.e.,
the feature extractor) with multi-task heads (i.e., the decoder).
In the second stage, we freeze the feature extractor and decoder
to train the fusing network to combine results from the decoder
and the kNN model. Note that we use the frozen feature extrac-
tor on training data to construct the datastore.

The overall flow of our system at the inference time is pre-
sented in Figure 2. During inference, the SSL model extracts
the feature representation for the input utterance. The features
are fed into the parametric and non-parametric paths separately.
The corresponding outputs are then fused to get the final out-
put. In the case of evaluating cross-domain audios, the steps are
identical, except replacing the datastore with the target domain
data without an additional fine-tuning stage.

3. The Proposed Method
The proposed method consists of the parametric path, the non-
parametric path, and the fusing network.

3.1. Parametric path

The parametric path refers to the use of a neural network-based
decoder to handle representations. The decoder is designed as

a multi-task architecture consisting of a regression head and a
classification head, which are implemented using several linear
layers following SSL-MOS [7]. The purpose of introducing a
classification head is to guide the model during fine-tuning, as
well as to output the confidence of each score bin. Obtaining the
confidence of the parametric model is crucial for subsequent re-
sult fusion. For the i-th instance (ui, si), we first map the score
si to the bin id bi. Then the model outputs a prediction score Sp

along with a confidence probability distribution [c1, c2, ..., cn]
on n bins. The loss function is defined by:

L = Lreg(ui, si) + αLcls(ui, bi), (1)

where Lreg and Lcls are the MSE and cross entropy losses, for
the regression and classification heads, respectively. The α is a
hyper-parameter that balances the two types of losses.

3.2. Non-parametric path

Compared to the parametric path, the non-parametric path di-
rectly exploits the representations with a kNN model. The rep-
resentation of the utterance being evaluated is used as the query
to retrieve the most similar data instances from the datastore,
along with their corresponding distances and labels. This infor-
mation is then used as part of the input to the fusing network.

Datastore: Let f(·) be the SSL model that maps an utter-
ance u to its representation. For a training sample (ui, si) ∈ D,
we create a key-value pair (ki, vi), where the key ki = f(ui)
is the representation vector of the utterance ui and the value
vi = si is its target score. The set of all key-value pairs con-
structed from all training examples in D forms the datastore
(K,V):

(K,V) = {(f(ui), si)|(ui, si) ∈ D}. (2)

Inference: During testing, the SSL model generates a rep-
resentation q for the input utterance, which is then utilized by
the kNN model to retrieve the k nearest neighbors, denoted
by Nk, from the datastore based on a given distance function
d(q, ·). The retrieved score Sr,k is then computed as follows:

Sr,k =
∑

(ki,vi)∈Nk

wikvi, (3)

where the weight wik is the inverse of its distance. Thus, neigh-
bors that are closer will exert more influence than those that are
farther away.
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Table 1: The performances of our framework along with two systems on BVCC and BC2019 test set.

(a) The results of the in-domain experiments.

dataset model U MSE↓ U LCC↑ U SRCC↑ U KTAU↑ S MSE↓ S LCC↑ S SRCC↑ S KTAU↑

BVCC
SSL-MOS 0.246 0.875 0.872 0.697 0.113 0.928 0.923 0.770

DDOS 0.212 0.880 0.880 0.707 0.110 0.933 0.932 0.782
RAMP 0.195 0.881 0.881 0.708 0.097 0.931 0.932 0.784

BC2019
SSL-MOS 0.253 0.901 0.871 0.690 0.098 0.980 0.970 0.871

DDOS 0.169 0.914 0.887 0.710 0.052 0.976 0.955 0.848
RAMP 0.188 0.916 0.891 0.717 0.053 0.987 0.987 0.926

(b) The results of the cross-domain experiments.

dataset model U MSE↓ U LCC↑ U SRCC↑ U KTAU↑ S MSE↓ S LCC↑ S SRCC↑ S KTAU↑

BC2019

SSL-MOS 3.187 0.527 0.549 0.403 2.976 0.590 0.655 0.569
DDOS 1.331 0.678 0.694 0.502 1.119 0.766 0.797 0.637
RAMP 0.658 0.826 0.780 0.587 0.493 0.929 0.907 0.772

RAMP(np) 0.294 0.842 0.789 0.596 0.093 0.955 0.926 0.797

Since kNN is sensitive to k, we improve its robustness by
using various values of k in the range [1, 2, . . . ,K], where K
is the hyperparameter. As a result, we obtain the retrieved score
distribution [Sr,1, Sr,2, . . . , Sr,K ], as well as the retrieved dis-
tance distribution [d1, d2, . . . , dK ], where dk is the distance be-
tween q and the k-th nearest neighbor.

3.3. Fusing network

We introduce two lightweight networks, k-net and λ-net, to dy-
namically predict the probability of the retrieval scope k and the
fusion weight distribution λ based on the predictive confidence
for each instance.

k-net: The k-net is a lightweight net consisting of only two
linear layers which dynamically predicts the probability of each
k for each instance. It takes as input the distance distribution
d = [d1, d2, . . . , dK ] of the retrieved neighbors and outputs the
probability distribution pknet over different values of k:

pknet = softmax(knet(d)). (4)

Therefore, the final retrieved score can be computed as a
weighted average of different Sr,k:

Sr =
K∑

k=1

pknet(k)Sr,k. (5)

λ-net: The λ-net has the same structure as k-net. To bal-
ance the outcomes of two paths, it takes the confidences as the
input, in addition to the distance distribution d. The confidences
include the top-8 values ctop from the confidence probability
distribution [c1, c2, ..., cn], and two confidences cSr and cSp of
the bins to which Sr and Sp belong. Thus, the weight and then
the final score can be computed as:

w = (wp, wr) = softmax(λnet([d; ctop; cSr ; cSp ])), (6)
S = wpSp + wrSr, (7)

where, Sp and Sr are the scores of the parametric and non-
parametric paths, respectively.

4. Experiments
4.1. Datasets and Metrics

The experiments in this paper use three corpora: BVCC [22],
BC2019 [23], and SOMOS [24]. BVCC contains 7,106 English

samples from the Blizzard Challenges, the Voice Conversion
Challenges, and published samples of ESPNet [25]. The ra-
tio of training/development/test is 70%/15%/15%, respectively.
BC2019 contains Mandarin TTS samples submitted to the 2019
Blizzard Challenge [23]. There are 136 samples for training,
136 samples for validation, and 540 samples for testing. We
also use SOMOS in the ablation study. It consists of 20K TTS
audio files generated from several Tacotron-like acoustic mod-
els [26] and an LPCNet vocoder [27].

Model evaluation is performed at the utterance level and
system level, denoted as ‘U ’ and ‘S ’, respectively. Mean
square error (MSE) and various correlation coefficient met-
rics are used. In particular, the Linear Correlation Coefficient
(LCC), the Spearman Rank Correlation Coefficient (SRCC) and
the Kendall Tau Rank Correlation (KTAU) scores are evaluated.
In general, smaller errors and higher correlations indicate better
model performance.

4.2. Implementation Details

We use the published wav2vec2.0 [5] base model pre-trained on
Librispeech [28] as the feature extractor. In both training stages,
the models are trained for 1,000 epochs with a batch size of 4
and a learning rate of 0.0001. Training will be stopped early
when the loss does not decrease for 20 epochs. Gradient accu-
mulation is used to simulate large batch. In the experiments, the
length of the score bin is 0.25. The α is set to 1 in equation 1.
We set K = 60 for BVCC, K = 8 for BC2019 in Table 1. The
L2 distance is used in Section 3.2. We crop the long audio in
the SOMOS dataset due to memory limitations for all compared
methods.

4.3. In-domain Analysis

We first compare the performance of our method RAMP with
SSL-MOS [7] and DDOS [9]. SSL-MOS is one of the first sys-
tems to employ the SSL model, which delivers high prediction
performance with an easy-to-use framework. DDOS is one of
the winning solutions of VoiceMOS Challenge 2022 [29], pro-
viding competitive outcomes across many metrics.

Table 1a shows the performance of three systems in BVCC
and BC2019. On the BVCC test set, our system RAMP per-
forms better than SSL-MOS in all metrics. Compared to DDOS,
RAMP performs better in error metrics and similarly in correla-
tion metrics. To evaluate the performance in BC2019, all three
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Table 2: The performance of two paths in three datasets: SOMOS (big), BVCC (medium), and BC2019 (small).

U MSE↓ U LCC↑ U SRCC↑ U KTAU↑ S MSE↓ S LCC↑ S SRCC↑ S KTAU↑
P NP P NP P NP P NP P NP P NP P NP P NP

b 0.185 0.179 0.658 0.668 0.653 0.658 0.468 0.473 0.182 0.174 0.664 0.676 0.659 0.665 0.474 0.480
m 0.200 0.201 0.874 0.880 0.876 0.880 0.702 0.708 0.106 0.101 0.917 0.934 0.915 0.934 0.756 0.787
s 0.226 0.196 0.880 0.904 0.831 0.868 0.634 0.682 0.064 0.045 0.968 0.984 0.926 0.972 0.797 0.889

Figure 3: The bars are the score distribution of the BVCC
dataset, and the curve represents the weights of the paramet-
ric path learned by the fusion network for each score bin. This
shows dynamic weights are assigned aligning with the data dis-
tribution, indicating the effectiveness of the fusing net.

models are first trained in BVCC and fine-tuned in BC2019 fol-
lowing the same procedure of the VoiceMOS Challenge 2022 to
make a fair comparison. On the BC2019 test set, RAMP also
outperforms SSL-MOS in all metrics. While DDOS outper-
forms our system slightly in terms of error metrics, our system
consistently performs well across all six correlation metrics.

Moreover, in order to investigate how the confidence-based
dynamic weighting scheme combines the two paths for effi-
cient prediction, we visualize the fusion weights for various in-
stances. Figure 3 displays the score distribution of the BVCC
data and the weights of the parametric path predicted by the
fusing network. The data exhibit a long-tailed distribution with
relatively small numbers of scores that are very low or very
high. As mentioned in Section 1, this unbalanced distribution
of data can cause the neural network to have different predic-
tion capabilities for data located in different score intervals. For
head data, the neural network-based decoder (i.e., the paramet-
ric path) can predict their scores with high confidence, requiring
less help from the non-parametric path. Thus, smaller weights
are assigned to the non-parametric path and higher weights to
the parametric path. Conversely, for data at the tail, higher
weights are assigned to the non-parametric path and smaller
weights to the parametric path.

4.4. Cross-domain Analysis

The results of cross-domain experiments are presented in Table
1b. All systems are trained in BVCC and tested in the BC2019
test set without additional fine-tuning. As the results show,
both SSL-MOS and DDOS exhibit a sharp drop in performance
across domains. While our system can solve the cross-domain
adaptation problem flexibly and excel in performance by updat-
ing the datastore without any additional training.

To further investigate the help from the non-parametric
path for cross-domain settings. We create a new variant called
RAMP(np), which only includes the non-parametric path. This
results in further improvements in performance, demonstrating
that the distribution shift undermines the mapping from repre-

sentations to scores, while the kNN model still performs well
by directly leveraging the representations.

4.5. Ablation study

We first compare the performance of the parametric and non-
parametric paths across different data scales. In Table 2, ‘P’ and
‘NP’ denote the parametric and non-parametric paths, respec-
tively. We conduct the experiments on three datasets: SOMOS,
BVCC, and BC2019, which correspond to tens of thousands,
thousands, and hundreds of scales, respectively. We can observe
that as the size of the dataset decreases, the non-parametric path
boosts the performance more significantly. This demonstrates
that our proposed method is more applicable to low-resource
tasks like most MOS prediction tasks.

We then conduct an ablation study on the fusing net. Vanilla
kNN uses a fixed k for all instances and its performance is sensi-
tive to the value of k. While our proposed fusing net specifies a
predefined upper bound K of the retrieval range. Then for each
instance, it dynamically computes the weighted average score
from the K kNN models, each trained with different numbers
of nearest neighbors from 1 to K. The weight of each kNN is
obtained through the network. We only show MSE and KTAU
performance on the utterance level since the trends of system-
level are similar. The results show that the fusing net performs
better on average and performs more consistently when chang-
ing the hyper-parameter K, demonstrating that the fusing net
can improve the accuracy and robustness of the model.

Table 3: The performance of the vanilla kNN and the fusing net.

k/K-size U MSE↓ U KTAU↑
Vanilla Fusing Vanilla Fusing

5 0.216 0.197 0.695 0.704
10 0.203 0.199 0.703 0.704
15 0.198 0.197 0.707 0.705
30 0.197 0.194 0.708 0.708
60 0.197 0.195 0.708 0.708

mean 0.202 0.196 0.704 0.706
var 6.57E-05 3.80E-06 3.07E-05 4.20E-06

5. Conclusions
In this paper, we propose RAMP, a novel retrieval-augmented
MOS prediction method, to enhance the neural decoder for al-
leviating the data scarcity issue in the SSL-based frameworks.
We also design a fusing network to dynamically adjust the re-
trieval scope and the fusion weights based on the predictive con-
fidence. The experimental results show that the proposed mod-
els perform well in both in-domain and cross-domain settings.
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