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Abstract
While speech-based depression detection methods that use
speaker-identity features, such as speaker embeddings, are pop-
ular, they often compromise patient privacy. To address this is-
sue, we propose a speaker disentanglement method that utilizes
a non-uniform mechanism of adversarial SID loss maximiza-
tion. This is achieved by varying the adversarial weight be-
tween different layers of a model during training. We find that
a greater adversarial weight for the initial layers leads to perfor-
mance improvement. Our approach using the ECAPA-TDNN
model achieves an F1-score of 0.7349 (a 3.7% improvement
over audio-only SOTA) on the DAIC-WoZ dataset, while simul-
taneously reducing the speaker-identification accuracy by 50%.
Our findings suggest that identifying depression through speech
signals can be accomplished without placing undue reliance on
a speaker’s identity, paving the way for privacy-preserving ap-
proaches of depression detection.
Index Terms: Depression-detection, Privacy, Healthcare AI,
Computational Paralinguistics

1. Introduction
Speech signals have emerged as significant biomarkers of one’s
emotional and mental state [1, 2, 3, 4]. Several previous stud-
ies have successfully demonstrated the potential of using speech
in developing automatic objective screening systems for mental
health disorders, including serious illnesses such as Major De-
pressive Disorder (MDD) [5, 6, 7]. Various features and model
architectures have been proposed in the past for the purpose
of MDD diagnosis [8, 9, 10], each having its own distinct set
of advantages and limitations. These include spectral [11, 12],
prosodic [13], voice quality [14] and articulatory [15] features
as well sophisticated modeling techniques such as data augmen-
tation [16], model ensembles [17], transfer-learning [18] and
self-supervised pre-training [19].

Similarly, speaker-identity-related features have been used
in depression detection, with previous studies focusing on i-
vectors [20], x-vectors [21, 22], or speaker embeddings [23].
Although these models result in good performance, the use
of speaker-identity-related features raises privacy-preservation
concerns. In the healthcare system, where there is often a stigma
surrounding mental health, it is important to develop models
that are less reliant on an individual’s identity [24].

Although the field of privacy-preserving depression detec-
tion is relatively new, a few studies have attempted to endeavor
in this direction. Among them, Federated learning [25] and
sine-wave speech [26] are notable examples of such methods.
Although these methods are promising, their application to low-
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resource depression detection from speech signals is still in its
early stages, and results in significant performance loss [25].

More recently, [27, 28, 29] proposed to remove speaker-
related information from speech signals using adversarial learn-
ing for speech emotion recognition. We refer to this approach
as uniform speaker disentanglement (USD) where the whole
model is trained with the same adversarial loss. Despite the
promising results of USD in detecting depression, as reported
in [30], the model has certain limitations that can impede its
performance. One such limitation is the lack of consideration
for the interactions between different layers of the model and
the relationship between the tasks being performed and the in-
termediate representations. For example, recent research has
shown that different layers of a model capture information dif-
ferently [31]. It is, therefore, possible that some layers capture
more depression information and less speaker information or
vice versa, and applying speaker disentanglement to all the lay-
ers uniformly may result in sub-optimal performance.

In this paper, we hypothesize that speaker-related informa-
tion encoded by different layers of a model is idiosyncratic, both
in terms of quantity and quality, where some layers may encode
more or fewer speaker characteristics than other layers, some of
which may not be relevant for depression detection. Assigning
a higher penalty to such layers during adversarial training can
improve overall model performance. Hence, we propose a novel
non-uniform speaker disentanglement method (NUSD) that reg-
ulates the proportion of speaker disentanglement applied to dif-
ferent model layers and show that NUSD outperforms USD.

We introduce a new model-input combination by training
the ECAPA-TDNN model [32] with raw-audio speech signals
as input. NUSD is implemented by adjusting the weighting of
the adversarial loss between the two components of the model:
the feature extraction (FE) and the feature processing (FP) sec-
tions. This method achieves audio-only state-of-the-art (AO-
SOTA) performance on depression detection using DAIC-WoZ
dataset [33] while simultaneously lowering speaker identifica-
tion (SID) accuracy. We analyze the behavior of the model lay-
ers using a class separability framework, finding that a higher
adversarial weight to the FE layers more effectively suppresses
speaker information than USD, leading to a better encoding of
depression information and performance improvement. To the
best of our knowledge, our study is the first to suggest the use of
a layer-behavior-based manipulation of loss, in that, we 1) pro-
pose differential weighting of the adversarial loss, and 2) utilize
the functionality of the FE and FP layers to decide on weight
distribution.

The paper is structured as follows: Section 2 presents the
proposed NUSD method. Datasets, models, and experiments
are described in Section 3. Results are discussed in Section 4,
and Section 5 concludes the paper and outlines future directions.
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2. Speaker Disentanglement
Uniform speaker disentanglement (USD) [30] minimizes the
prediction loss for the primary task and maximizes the loss of
the auxiliary task. In the context of this paper, the primary task
is depression detection, and the auxiliary task is SID. Conse-
quently, the USD loss function is -

LUSD = LMDD − λ(LSPK) (1)

where LMDD is the depression-detection loss and λ con-
trols how much of the SID loss, LSPK contributes to the total
loss, LUSD . Conventionally, LMDD is Binary Cross Entropy
loss, and LSPK is multi-class Cross-Entropy loss.

A higher value of λ indicates a greater adversarial cost dur-
ing training. This in turn scales the speaker-loss gradient of all
the layers uniformly, by the same factor λ. Let the trainable pa-
rameters of a model be denoted as θALL, then, the gradient of
LSPK in USD can be expressed as -

∂LSPK(USD)

∂θALL
=

∂(λLSPK)

∂θALL
(2)

During the optimizer’s update step, the model’s parameters
are modified as follows:

θALL = θALL + α(
∂LSPK

∂θALL
− ∂LMDD

∂θALL
) (3)

where α is the learning rate. The negative term (positive
sign) for the speaker gradient in Eq. 3 ensures that the model
maximizes LSPK while simultaneously optimizing LMDD

thereby partially disentangling speaker identity and depression
status. Although USD has shown promising results in speaker
disentanglement for depression detection [30], it can be further
improved by providing better control over the proportion of ad-
versarial disentanglement applied to different model layers.

To address this limitation, we propose a non-uniform
speaker disentanglement (NUSD) approach. The idea is as fol-
lows - the loss gradients of the auxiliary task can be split into
multiple components based on model layers and unlike USD,
loss maximization can be applied differently to each compo-
nent thereby allowing for varying levels of disentanglement to
be applied to different layers.

As a preliminary study, we split the gradients into two com-
ponents: the feature extraction component (FE) composed of
the initial layers, and the feature processing component (FP)
made up of the final layers as detailed in Section 3.3.1. The
trainable parameters of these components can be represented as
θFE and θFP for the FE & the FP layers, respectively. The
speaker-loss gradients of FE and FP are non-uniformly scaled
using different factors λ1 and λ2, respectively. Therefore, for
NUSD, the gradient of LSPK can be written as -

∂LSPK(NUSD)

∂θALL
= [

∂(λ1LSPK)

∂θFE
,
∂(λ2LSPK)

∂θFP
] (4)

Comparing Eq. 4 with Eq. 2, it can be observed that NUSD
helps us regulate adversarial disentanglement of different lay-
ers of the model differently by changing the ratio of λ1 to λ2

(denoted as β in later sections). For example, if β < 1 i.e.,
λ2 > λ1, then the FP layers are penalized more than the FE
layers during adversarial training and vice-versa. Conversely, if
β = 1, then NUSD is equivalent to USD.

3. Experimental Details
This section outlines experimental details, including the dataset,
preprocessing steps, and the model architecture. Two models,
ECAPA-TDNN [32] and DepAudioNet [34] were trained on a
publicly available dataset to showcase our approach’s effective-
ness. ECAPA-TDNN is a SOTA model in SID [32] and emotion
recognition [35, 36], while DepAudioNet is a common depres-
sion literature baseline [34].

3.1. Dataset and Input Features

3.1.1. Database

The DAIC-WoZ database [33] is a collection of audio-visual
interviews in English featuring 189 participants, both male, and
female, who underwent psychological distress evaluations. The
dataset contains 107 speakers used for training and 35 speak-
ers used for evaluation, consistent with the database descrip-
tion. Audio data from only the patients were extracted using the
provided time labels. The validation set was utilized to report
results, in line with previous literature.

3.1.2. Data Pre-processing and Input features

Models were trained using raw-audio features as input, with
pre-processing steps implemented to address data imbal-
ance [34, 37, 30, 19]. Prior to training, the training data were
pre-processed with random cropping and sampling, where each
utterance was randomly cropped to the length of the shortest ut-
terance and segmented into multiple 3.84s segments (equivalent
to 61440 raw-audio samples). To generate a balanced training
subset, an equal number of depression and non-depression seg-
ments were randomly sampled without replacement. In each
experiment, five models were trained using a randomly gener-
ated training subset, with the final prediction averaged across
the five models. The raw-audio samples were normalized using
mean-variance normalization [37].

Table 1: Architecture details of the ECAPA-TDNN Model.
[InC,OutC,K,S,P,D] are in-channels, out-channels, kernel,
stride, padding and dilation, respectively.

Layer Name InC,OutC,K,S,P,D
Input Layer [1,128,1024,512,0,1]
SE-Res2-1 [128,128,3,1,2,2]
SE-Res2-2 [128,128,3,1,3,3]
SE-Res2-3 [128,128,3,1,4,4]
Feature aggregation -
Concat-Conv [384,384,1,1,0,1]
AttentiveStatsPool [384,768,-,-,-,-]
Embedding Layer [768,128,-,-,-,-]
Speaker Prediction Layer [128,107,-,-,-,-]
Depression Prediction Layer [128,1,-,-,-,-]

3.2. Models

3.2.1. ECAPA-TDNN

In contrast to previous studies [38] that use spectrograms
or MFCCs as inputs, the proposed ECAPA-TDNN model is
trained using raw-audio signals. The model architecture was
modified (see Table 1) to accommodate raw-audio speech sig-
nals as input and avoid overfitting the model to a small training
dataset. Specifically, the kernel and stride of the input convo-
lution layer, the number of channels in the intermediate layers,
and the dimensions of the prediction layers were modified.
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3.2.2. DepAudioNet

This model employs a CNN-LSTM architecture [34] with im-
plementation based on [37]. Two 1-D Convolution layers fol-
lowed by two unidirectional LSTM layers were used. Lastly,
the MDD and speaker prediction layers were fully connected
layers with output dimensions for speaker labels being 107.

3.3. Experiments

3.3.1. USD and NUSD

Both models share the same adversarial weight λ across all lay-
ers in the USD experiments. In contrast, in the NUSD exper-
iments, the FE layers are weighted with λ1 and the FP layers
with λ2. We consider the input layer and three SE-Res2 blocks
of the ECAPA-TDNN model as FE, while the feature aggrega-
tion layer, concat-Conv layer, attention layer, fully connected
embedding layer, and prediction layers are FP. Similarly, for
DepAudioNet, the first 2 convolutional layers are FE with the
two LSTM layers along with the prediction layers as FP. β and
λ values are empirically chosen1.

3.3.2. Speaker Identification Experiments

To investigate how speaker disentanglement affects speaker
identity, we conduct a SID experiment by training a support
vector classifier (SVC) using speaker embeddings (the embed-
ding layer output from the ECAPA-TDNN model or the hidden
representation of the last LSTM layer from the DepAudioNet
model). During SVC training, embeddings are obtained from
the baseline model without speaker disentanglement, while the
evaluation embeddings are taken from the model with or with-
out speaker disentanglement. Note that the SID branch of the
model is discarded when extracting speaker embeddings.

3.3.3. Layer-wise GDV Analysis

Because the proposed method regulates the magnitude of ad-
versarial disentanglement applied to different components of
the models, we investigate the layer-wise behavior of the mod-
els with and without NUSD. This is accomplished with Gener-
alized Discrimination Value (GDV) [39] analysis. Previously,
GDV has been proposed as a metric to evaluate the separabil-
ity of specific representations with respect to various classes
and data labels. In this paper, we employ GDV to measure the
speaker and MDD-separability of individual layers’ outputs for
the models in consideration. The prediction layers are excluded
in this analysis and GDV values are sign-flipped, such that a
higher GDV stands for better separability.

4. Results and Discussion
Results are shown in Table 2, where the best results from the
literature are in the first part, and the baselines and proposed
method, are in the second part. Methods are compared us-
ing speaker-level F1-scores for the depressed (F1-D), the non-
depressed (F1-ND) classes, and their non-weighted (macro) av-
erage (F1-AVG). To measure the degree of speaker disentangle-
ment, the accuracy of SID was reported if applicable.

4.1. Baseline Experiments

The DepAudioNet model (D1), trained on raw-audio, achieves
an F1-Score of 0.6259, whereas the proposed ECAPA-TDNN

1Code repository: https://github.com/kingformatty/NUSD

model (E1), also trained on raw audio signals and with-
out speaker disentanglement, achieves an F1-Score of 0.632,
demonstrating a 1.12% improvement. Some previous stud-
ies have achieved better results than D1 and E1, for example
the Vowel-based study [44] (0.7) and the SpeechFormer [43]
(0.694). However, these studies have certain limitations.
The Vowel-based study requires a trained vowel classification
model, while SpeechFormer is a large model with 33M parame-
ters. In contrast, the proposed raw audio-based ECAPA-TDNN
model has only 609k parameters and does not need any auxil-
iary classifiers nor expensive self-supervised models making it
simpler and more efficient.

4.2. Speaker Disentanglement

When USD is applied to the DepAudioNet Model (D2), its
performance improves by 9.12% from 0.6259 to 0.6830 (λ =
3e−4). Furthermore, when the ECAPA-TDNN model is trained
using USD (E2), it achieves an impressive F1-Score of 0.7086
(λ = 3e−3), outperforming E1 by 11.96%. Along with a sig-
nificant increase in MDD classification performance, there is a
decrease in SID accuracy of 11.2% (from 10.04% to 8.91%) and
77.8% (from 42.33% to 9.38%) for D2 and E2, respectively.

Next, we apply NUSD to the DepAudioNet and ECAPA-
TDNN models and label the resulting best-performing models
as D3 and E3, respectively. Model D3 achieves an F1 score
of 0.7086 (λ1 = 2e−3, λ2 = 4e−4), an increase of 13.21%
over D1 and 3.75% over D2, while only marginally reducing
the SID accuracy to 8.05%. The overall best-performing model
is E3, which achieves an F1 score of 0.7349 (λ1 = 4e−5,
λ2 = 8e−6), outperforming other AO-SOTA models in the lit-
erature and surpassing the corresponding baseline models E1
and E2 by 16.12% and 3.7%, respectively while simultaneously
reducing the SID accuracy to 4.68%. These results imply that
applying NUSD can be an effective way to enhance depression
classification performance while reducing SID performance.

The proposed E3 model surpasses AO-SOTA performance
in depression detection without requiring additional training
data, sophisticated pre-trained models, or complicated hand-
crafted features. Compared to some previously published AO-
SOTA results, the method achieves an improvement of 4.98%
vs. vowel-based [44] and 5.89% vs. SpeechFormer [43]. Al-
though [23] has a better F1-ND when combining speaker em-
beddings with OpenSmile [45] features, our method achieves
a better overall F1-AVG. Moreover, [23] uses a segment-level
evaluation procedure, in contrast to using speaker-level as in
this paper, and reports a lower F1-D of 0.43 and F1-ND of 0.82
when only speaker embeddings are used without feature-fusion.

In pilot experiments, we found that raw audio outperformed
Mel-spectrograms, and ComparE16 [45]. Hence, we used the
strongest baseline as the goal of the work is to provide a frame-
work that can improve performance regardless of the features
chosen and not to compare the performance based on features.

4.3. Ablation Experiments

In order to study the impact of the hyperparameter β on model
performance, we conducted a series of experiments using dif-
ferent values of β ranging from 10 to 0.1. The F1-AVG scores
were plotted as a function of β for both models (Figure 1). Our
analysis revealed two key observations: Firstly, for both mod-
els, NUSD (β = 5) consistently outperformed USD (β = 1),
indicating that a non-uniform manner of adversarial training can
be beneficial for performance.

Secondly, we observed a trend in both DepAudioNet and
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Table 2: Depression detection performance for various models and AO-SOTA baselines based on F1-AVG, F1(ND), F1(D), and Speaker
ID accuracy using the DAIC-WoZ dataset. SOTA baseline results are either reproduced values or reported from the corresponding study.
The symbol ‘−’ indicates that those values were not reported in the corresponding study. The symbols ‘ ↑’ and ‘ ↓’ indicate a higher
or lower value is better, respectively. Best results are highlighted in bold.

Model Architecture Input Feature Disentanglement
Method

Model
Parameters F1-AVG ↑ F1(ND) ↑ F1(D) ↑ SID

Accuracy ↓
DepAudioNet [34] Mel-Spectrogram None 280k 0.6081 0.6977 0.5185 -
FVTC-CNN [40] Formants None - 0.6400 0.4600 0.8200 -
Speech SimCLR [41] Mel-Spectrogram None - 0.6578 0.7556 0.5600 -
CPC [42] Mel-Spectrogram None - 0.6762 0.7317 0.6207 -
CNN-LSTM [23] Spk. Embd. + OpenSmile None - 0.6850 0.8600 0.5100 -
SpeechFormer [43] Wav2Vec None 33M 0.6940 - - -
Vowel-based [44] Mel-Spectrogram None - 0.7000 0.8400 0.5600 -
DepAudioNet [37] (D1) Raw-Audio None 445k 0.6259 0.7755 0.4762 10.04%
DepAudioNet [30] (D2) Raw-Audio USD 459k 0.6830 0.7826 0.5833 8.91%
DepAudioNet (D3) Raw-Audio NUSD 459k 0.7086 0.8085 0.6087 8.05%
ECAPA-TDNN (E1) Raw-Audio None 595k 0.6329 0.7273 0.5385 42.33%
ECAPA-TDNN (E2) Raw-Audio USD 609k 0.7086 0.8085 0.6087 9.38%
ECAPA-TDNN (E3) Raw-Audio NUSD 609k 0.7349 0.8333 0.6364 4.68%
∆ (E3 vs E2) in % - - - 3.70 2.80 4.55 -50.11
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Figure 1: A plot of F1-AVG versus NUSD β values for the
ECAPA-TDNN and the DepAudioNet CNN-LSTM model. Best
viewed in color.

ECAPA-TDNN models wherein higher values of β produced
better results up to β = 5. This finding suggests that assigning a
higher penalty to the initial layers than to the final layers during
adversarial training can improve model performance. One pos-
sibility is that assigning a higher weight to penalize FE layers in
NUSD leads to more effective suppression of speaker-specific
feature extraction that may not be too relevant to the primary
task of depression detection, compared to assigning the same
weight to both FE and FP layers as in USD. Although this is a
consequential outcome and holds true for depression detection
using the DAIC-WoZ dataset, further investigation is required
to verify that the framework generalizes to other domains.

4.4. Layer-wise GDV Analysis

MDD and speaker separability of individual layers of the E1,
E2, and E3 were analyzed using the GDV scores (Figure 2).
Overall, these plots offer valuable insights into the behavior
of the model and shed light on how the proposed method af-
fects the separation of depression and speaker features within
the model. Notably, for speaker-separability, NUSD had the
lowest value among the three methods in all layers except in the
embedding layer (0.664 for USD vs. 0.688 for NUSD) showing
that NUSD was better at speaker disentanglement than USD in
the FE layers and comparable to USD in the FP layers.
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Figure 2: A plot of the layer-wise speaker and MDD separa-
bility GDV scores of the ECAPA-TDNN model. Three models
are analyzed - baseline without speaker disentanglement (E1),
USD (E2), and NUSD (E3). X-axis represents the layers of the
ECAPA-TDNN model. Best viewed in color.

For depression separability, we observe that NUSD has a
significantly better separability profile throughout the model
compared to USD and the baseline counterparts. These find-
ings support our hypothesis that speaker information encoded
by different layers of the model is distinctive and non-uniform
speaker disentanglement, which exploits these characteristics of
model behavior, leads to better depression detection.

5. Conclusion

The proposed privacy-preserving approach of speech-based de-
pression detection shows promising results by utilizing a non-
uniform mechanism of adversarial SID loss maximization. The
approach achieves an F1-Score of 0.7349 on the publicly avail-
able DAIC-WoZ dataset without any data augmentation, pre-
training, or handcrafted features, outperforming other AO-
SOTA methods while simultaneously reducing SID accuracy.
These findings suggest that our approach leads to better model
performance with improved speaker disentanglement. Future
work will focus on analyzing the effects of the number of speak-
ers in the database, exploring a more fine-grained, data-driven
variant of NUSD, and extending the approach to other domains.
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