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Abstract

Considerable progress has been made in multi-channel speech
separation for fixed arrays. In this paper, we aim to develop
a robust system for ad-hoc arrays to deal with uncertainties of
microphone locations and numbers. Previous works commonly
used the averaging method for ad-hoc arrays, overlooking the
diversity of microphones in various positions. Some studies
suggest that microphones with high signal-to-noise ratio(SNR)
are more helpful in improving speech quality. Motivated by this,
we propose stream-attention and dual-feature learning network
called SDNet. The key points are as follows: 1) We propose
a dual-feature learning block with fewer parameters to learn
the long-term dependency better. 2) Based on this high-quality
speech representation, we further propose stream attention that
effectively handles microphone variability and allocates more
attention to microphones with higher SNR. Experiments show
that our proposed model outperforms other advanced baselines.
Index Terms: speech separation, ad-hoc, deep learning, stream
attention

1. Introduction

With the development of artificial neural networks, deep-
learning-based speech separation has achieved notable results.
This technique is usually used as a front end for automatic
speech recognition (ASR) or to improve auditory perception in
humans. Multiple microphones are often necessary for effective
speech separation in real-world scenarios, but fixed arrays may
not always be practical due to spatial constraints.

Speech signal can be modeled in the time-domain or time-
frequency (T-F) domain, depending on whether short-time
Fourier transform (STFT) is required. Many monaural ap-
proaches perform well irrespective of the need for STFT [1, 2].
Furthermore, many studies [3, 4] have shown that multiple mi-
crophones can improve separation performance. Given the good
performance of some traditional beamforming methods, some
multi-channel speech separation models explore them in combi-
nation with deep neural networks [5, 6, 7]. Other methods adopt
a data-driven approach and train a model to map multi-channel
mixed speech to a clean version relative to a reference micro-
phone [8, 9]. In [10], an embedding module was employed to
estimate beamforming weights using a multi-channel approach,
which expanded on the single-channel convolutional recurrent
network (CRN) [11], also shaped like a U-Net [12].

However, all of these aforementioned multi-channel meth-
ods are based on fixed arrays. Processing speech signals using
spatially distributed microphones with unknown numbers and
positions remains a challenging task. The transform-average-

* denotes the corresponding author.

concatenate (TAC) module [13] and its variations [14, 15, 16]
offer a simple yet effective solution to the microphone number
invariant problem by averaging and concatenating, although this
approach may not necessarily be optimal. Different from TAC,
[17] adopts a sum operation rather than concatenate. Although
the average operation is suitable to tackle the problem of micro-
phone permutation and number variation, it ignores the diversity
of microphones in different positions [18]. [19] use an attention
mechanism for spatial processing, but the utilization of spatial
information is limited by the use of only the magnitude spec-
trum. [20, 21] utilize a triple-path network in time domain, in
which two paths are used for temporal processing, and one path
is used for spatial processing.

Some studies [18, 22] have indicated that microphones with
higher SNR are more effective in improving speech quality for
enhancement tasks. Based on this observation, we propose a
framework called: stream-attention and dual-feature learning
network (SDNet) for distributed microphone array speech sep-
aration in T-F domain. The key contributions are as follows:
Firstly, instead of placing the sequence model at the bottleneck
as most CRN methods do, we propose to use dual-feature learn-
ing(DFRNN) blocks in the encoder to better learn long-term
dependency. This can help alleviate the issue of inadequate fea-
ture learning, because the frequency dimension will gradually
decrease in the encoder. Each DFRNN block comprises two
RNNs following behind the encoder block, one for frequency
learning and the other for feature map channel learning. By
learning features independently and iteratively, the speech in-
formation of each microphone will be represented better with
fewer trainable parameters. The U-Net with the DFRNN block
is referred to as DNet. Secondly, we consider better utilization
of spatial information based on this high-quality speech repre-
sentation. The distance between microphones and speakers or
noises can vary significantly in an ad-hoc array, leading to vary-
ing SNR among microphones and different gains. To improve
the utilization of microphones that are more useful for speech
separation, we use stream attention to assign higher weights to
microphones with higher SNR. The experimental results show
that our proposed method outperforms the advanced baselines.

2. Signal model and baseline

In the T-F domain, the multi-channel noisy signal X recorded
by an M -channel microphone array can be represented as:

P
Xm(fvt)zzsm(fat)+Nm(f7t) (1)

where m € [1,M],f € [1,F],t € [1,T] and p € [1, P] re-
spectively denote the indices of microphones, frequencies, time
and speakers. This work focuses on estimating P clean signals
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Figure 1: The flowchart of the proposed framework SDNet. “DFRNN” is used to model the temporal dependencies. “Stream attention”
is responsible for processing unknown geometry and reassigning weights to microphones at various distances. M complex masks will
be estimated to multiply with the mixtures in a filter-and-sum manner.
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Figure 2: The flowchart of DFRNN. “FRNN” and “CRNN” mean the input feature is the frequency and feature map channel dimension.

from noisy and reverberated speech signals. The training target
is the reverberant clean speech signal, so reverberation suppres-
sion is not considered.

EabNet [10] adopts the U2-Net [23] architecture in the
multi-channel speech enhancement task and achieves good re-
sults. Single-channel methods usually receive concatenated real
and imaginary parts of STFT spectrogram as input features.
EabNet further concatenates spectrograms of all microphones
to create the input X € RE*¥*T for multi-channel process-
ing, C = 2M. Spatial information can be learned by several
convolving kernels during down/up sampling, and eventually
represented by an embedding with spectral information. This
embedding is used to estimate )/ complex masks to multiply
with the noisy mixtures in a filter and sum manner. This method
use only convolutional kernels to learn spatial information may
work for a fixed array, but it’s not effective for ad-hoc arrays.

3. SDNet Architecture

The overall diagram of the proposed model is shown in Fig.
1. In our pipeline, inspired by [15], we introduce an extra
dimension stream (i.e. microphones) as the first dimension.
Each stream contains all the information of corresponding mi-
crophone. Many speech processing methods for ad-hoc arrays
ignore the role of spatial features such as inter-channel phase
difference (IPD). In our experiments, we find that better results
will be obtained if IPD is used, although the distances between
each microphone are relatively large. The number of micro-
phones is zero-padded to an upper bound M. We compute the
cosine and sine values of IPDs by the phase difference between
the first microphone and other M — 1 microphones of complex
spectrogram. STFT and IPDs are concatenated along the chan-
nel dimension. Thus our input is X € RM*EXEXT o — 4
After the last layer of decoder, we average pool the information
from each stream fused by attention and feed it to the mask esti-
mation module. This approach can model the representation of
each microphone well and fully learn spatial information.
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3.1. Dual-feature Learning RNN

Prior work based on U-Net architecture usually put the se-
quence modeling module in the middle of the encoder and de-
coder to learn long-term dependencies. However, due to re-
peated downsampling in the encoder, the frequency dimension
of the input to the bottleneck is greatly reduced, potentially im-
peding the temporal module’s ability to fully capture frequency
information. Another option we suggest is to put sequence mod-
eling module after each encoder block. Inspired by DPRNN
[24], we propose a dual-feature learning RNN block, this ap-
proach has better temporal modeling ability and can leverage
more information due to multi-scale learning.

The schema of the DFRNN is shown in Fig. 2. Each
DFRNN block contains two RNN layers for frequency and fea-
ture map channel learning iteratively across time (frame) di-
mension. More specifically, the stacked two RNN layers ex-
pect to learn long-term dependencies respectively from the fre-
quency dimension and the feature map channel dimension. The
first RNN layer called FRNN can learn abundant information
from frequency bins to distinguish different voices. The fre-
quency dimension is not the sole dimension in the latent domain
due to the increase in the number of channels caused by convo-
lution operation. The second RNN layer, CRNN, is essential
for learning the relationships among feature maps. After each
RNN layer, a linear layer and a layer normalization layer are
appended to make the network robust.

3.2. Stream attention

Paper [25] uses channel attention to determine the importance
of each feature map. Similar to EabNet, the input to the channel
attention (CA) units are 3D tensors with shape X € RE*FxT,
C = 2M. It should be noted that after the processing of con-
volution block such as DenseNet [26], the number of feature
maps will be changed. We use ’ to indicate potential variable
dimensions due to convolutional resampling. In other words,
channel attention units are performed on the tensors of shape

’ ’ ’ . . . .
X € RY*FXT" "and the dimensions of the input are different



for CA unit at different blocks. So the number of feature maps
will not always be equal to the number of microphones. The
calculation of attention weights will make less sense as far as
signal theory is concerned.
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Figure 3: [llustration of the calculation process of stream atten-
tion. Q, K and V are transformed from X by point-wise conv-2d.

Different from [25] performing self-attention on different
feature maps, we propose stream attention as shown in Fig. 3,
which is performed on different streams. The output of en-

coder block X € RM O/ xF'xT g rearranged to 4D tensors

MxC'xXF'xT s
X eR , then stream attention is performed. We

! ’ ’ ’

first compute Q, K € RM*CXF' XD and v @ RM* > F T
from X. Note that we call each frequency bin of feature map
“c-f bin”. For each c-f bin, three latent representations Q. €
RM*DP K. ;€ RM*P and V. ; € RM*T can be computed

using point-wise 2D convolution (PConv2d) as following:

Qe.p,Ke 5, Ve,p = PConv2dy 2,3(X) 2

We multiply the query and key to calculate the similar-
ity. And then a softmax function is applied to the last dimen-
sion(stream) of the attention weights matrix:

We s = softmax(sz <K f) 3)
After normalizing the weights matrix with the softmax
function, we multiply it by V' to assign various streams various
weights as follows:
Yoy=Wes V. “
The above equations show that c-f bin weights differ across
streams at identical positions. The shape of the whole atten-
tion matrix is W € RO XF' XMxM - Aq result, different fea-
ture maps in a stream and frequency bands in a feature map
will get varying attention scores. Compared with common at-
tention calculation procedure, this approach not only selects the
best streams but also reassigns attention weights to different fre-
quency bands and feature maps within a stream. After that, we
rearrange Y into 3D tensors for next encoder block.

4. Experiments
4.1. Dataset

In [13], the authors develop a multi-channel noisy reverberant
dataset for ad-hoc array speech separation. Following the same
configuration', we simulated 20000, 5000, and 3000 4-second
long utterances for training, validation, and testing, respectively.

Uhttps://github.com/yluo42/TAC
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The dataset includes an equal distribution of microphone num-
bers ranging from 2 to 6. Each utterance is composed of two
speakers and one nonspeech noise which are randomly selected
from the 100-hour Librispeech dataset [27] and the 100 Non-
speech Corpus [28]. The locations of all the microphones,
speakers and noises are random. The sampling rate is 16 kHz.
As the microphones are assumed to be the same, the signals are
synchronized. Please refer to [13] for more details.

4.2. Experimental setup
4.2.1. Network parameters

‘We use the same convolution blocks as [10] in the encoder and
decoder, with the exception of the number of convolution chan-
nels. As the entire network has a U%-Net shape, each convo-
Iution block in the en/decoder is also a U-Net network. The
number of encoding layers within the U-Net block is {4, 3, 2,
1, 0} and the reverse is for decoding layers. For each down/up
sampling block, the kernel and stride sizes are (1, 3) and (1,
2), and the number of convolution channels is 32 except the last
one of encoder and decoder which is 64. 3 DFRNN blocks com-
posed of 2 stacked 1-layer-bidirectional LSTM are placed after
the first 3 blocks of encoder. In addition, the number of stream
attention blocks is set to 4. D is set to 32.

4.2.2. Training details

The input representation is the complex STFT computed using a
Hanning window of length 320 samples (20ms) with a hop size
of 160 samples. We use the Adam optimization algorithm to
train the models with the learning rate of 0.001. We use neg-
ative scale-invariant signal-to-noise ratio (SI-SNR) [29] with
utterance-level permutation invariant training (uPIT) [30] as the
loss function for all models. SI-SNR improvement(SI-SNRi),
PESQ [31], and STOI [32] are used to evaluate the separation
performance. All results are derived by averaging values from
two speakers and across all examples in the test set. Except for
the results in Table 1, which are trained for a maximum of 100
epochs, all models undergo training for up to 150 epochs with
early stopping after 10 consecutive epochs of no improvement
in validation accuracy. Due to space limitations, only the re-
sults for 2, 4, and 6 microphones are reported for datasets that
include various microphone counts.

Table 1: Ablation study on the part of the dataset with 6 micro-
phones. “Par” denotes the number of parameters. v denotes
the average of the three experimental results. * denotes using
different sequence modeling strategies.

Model Par. (M) SI-SNRi PESQ
UNet*TCN 1.84 7.92 1.64
+IPDs 1.85 9.82 1.70
*DFRNN 0.72 10.40 1.81

4.3. Results and discussion

We conduct ablation experiments using a subset of the dataset
with only 6 microphones, as shown in Table 1. DNet performs
not very well since less spatial information has been learned.
But the incorporation of IPDs has resulted in substantial ad-
vancement. This indicates that manually calculated IPD can im-
prove separation performance in an ad-hoc array consisting of
identical microphones. To solve the problems mentioned in sec-
tion 3.1, we remove the stacked temporal convolutional network



Table 2: Experimental results with different multi-channel schemes on the ad-hoc array. A clear trend is that better results can be

achieved with more microphones. Due to space restrictions, only the results of 2/4/6 microphones are presented.

Model of mics SI-SNRi PESQ STOI

DF-EabNet 12.79/13.00/13.05  2.14/2.17/2.15  0.89/0.89/0.89
+channel attention[25] 12.75/13.24/13.35  2.18/2.25/2.24  0.89/0.90/0.90

DNet 2/4/6 11.40/12.69/12.98  1.96/2.12/2.13  0.86/0.88/0.89
+stream pooling [15] 13.30/14.61/15.12  2.25/2.48/2.53  0.90/0.92/0.93
+stream attetnion 14.84/15.85/16.11  2.49/2.70/2.75  0.92/0.93/0.94

Table 3: Experimental results compared with advanced baselines on ad-hoc array with various numbers of microphones. (-) denotes
the results are from the original paper. Bold indicates the best results.

Model Par. (M) of mics SI-SNRi PESQ STOI
FasNet-TAC [13] 29 11.17/12.14/12.43 1.77/1.84/1.83  0.84/0.86/0.86
EabNet [10] 2.8 2/4/6 12.10/12.62/12.58 2.00/2.07/2.05  0.87/0.89/0.89
TPRNN [20] 2.24 (13.25)/(14.27)/(14.65) - -
SDNet 0.85 14.84/15.85/16.11 2.49/2.70/2.75  0.92/0.93/0.94

(TCN) in the bottleneck and then add our DFRNN blocks after
the convolution block termed as DNet. Compared to putting
the temporal module in the bottleneck, DFRNN can fully uti-
lize information from different dimensions. And each dimen-
sion only needs to be learned with a small network. Compared
with TCN, using DFRNN with fewer parameters yields better
results. It demonstrates the viability of DFRNN. This multi-
scale learning might be better than learning at bottleneck since
the DFRNN block immediately follows the convolution block.

frequency band

Figure 4: (a) Attention matrix W from 2 microphones input. (b)
W from 6 microphones input.

Table 4: Input SNR of one example as Fig. 4 (b). shown.

H SNR  mic0 micl mic2 mic3 mic4 mic5 H
spkO  -9.99 247 -4.04 1.13 10.76 -13.25
spkl 942 -883 330 -247 -12.91 12.52
mean -0.28 -3.18 -0.36 -0.67 -1.07 -0.36

Table 2 shows the results of different spatial information
learning methods on the whole dataset. In order to verify the ef-
fectiveness of channel attention(CA) [25], we add the CA unit
to the EabNet with DFRNN block(termed as DF-EabNet) di-
rectly, yet the results barely change. We assume that the fea-
ture maps are no longer associated with specific microphones
in the latent domain, resulting in biased attention computation.
For DNet, we first use stream pooling method which is simi-
lar to TAC [13]. Stream pooling improved the results, which
also demonstrated the effectiveness of the previous averaging
method. However, stream attention improves the performance
further. Stream attention pays attention to different groups of
feature maps, and the number of groups and microphones are
fairly even. We think this mechanism can implicitly select
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the microphones (stream) that contain more speech informa-
tion and less noise information. We compute the average of
W over the feature map channel dimension and visualize the
score of the first stream attention block where streams have not
yet been integrated, as shown in Fig. 4. Each subfigure shows
{WEr s« Mx0s s Wrrx a1 ar } from left to right, where M = 6.
It can only focus on the stream with actual spectrum for input
with padding. Since microphone 0 is chosen as the reference
microphone, the corresponding score is high. In addition, mi-
crophones 4 and 5, which correspond to a speaker with a higher
SNR, have also received more attention.

As shown in Table 3, we compare our proposed network
with some advanced baselines. FasNet-TAC [13] is a time
domain multi-channel speech separation method with a TAC
module for microphone permutation and number invariant pro-
cessing. EabNet [10] is a multi-channel speech enhancement
method in T-F domain, we simply increase the number the es-
timated complex mask for multiple source separation. TPRNN
[20] is a recently proposed state-of-the-art method in time do-
main on the same dataset. Considering only the results on the
6-microphone test dataset, our method achieved a 28.06% rel-
ative improvement in SI-SNRi over the baseline, and a 9.96%
relative improvement over the state-of-the-art (SOTA) method.
Our proposed method also achieves the best results among the
list baselines with fewer parameters on other metrics.

5. Conclusion and future work

In this work, we propose DNet to model the long-term depen-
dency signal better by learning features independently and iter-
atively. Furthermore, we introduce stream attention mechanism
for the variant number and permutation problem in unknown ge-
ometry, thereby better utilizing spatial information and focusing
more on the microphones that are more helpful for separation.
Our proposed SDNet reaches a new state-of-the-art on ad-hoc
array speech separation task with fewer parameters. Consid-
ering the non-real-time nature of our network, future work in-
volves optimizing this aspect to enhance its performance.
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