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Abstract
Multimodal emotion recognition (MER) aims to detect the emo-
tional status of a given expression by combining the speech and
text information. Intuitively, label information should be capa-
ble of helping the model locate the salient tokens/frames rele-
vant to the specific emotion, which finally facilitates the MER
task. Inspired by this, we propose a novel approach for MER
by leveraging label information. Specifically, we first obtain
the representative label embeddings for both text and speech
modalities, then learn the label-enhanced text/speech represen-
tations for each utterance via label-token and label-frame inter-
actions. Finally, we devise a novel label-guided attentive fu-
sion module to fuse the label-aware text and speech represen-
tations for emotion classification. Extensive experiments were
conducted on the public IEMOCAP dataset, and experimental
results demonstrate that our proposed approach outperforms ex-
isting baselines and achieves new state-of-the-art performance.
Index Terms: Multimodal emotion recognition, label embed-
ding, cross-attention

1. Introduction
Generally, the emotion of spoken language is beyond the lin-
guistic content of the utterance itself, and it is also related to the
speaker’s voice characteristics. To completely understand the
emotion of the speaker, the text- and speech-based multimodal
emotion recognition (MER) task was proposed to identify the
emotion within an utterance [1].

Recently, MER has attracted more and more attention. In
the early phase, most works explored rule-based and neural
network-based methods [2, 3]. With the rapid development of
self-supervised learning and pre-training, researchers attempt to
tackle this task based on pre-trained models, e.g. BERT [4] and
wav2vec2.0 [5]. For instance, Li et al. [6] proposed a context-
aware multimodal fusion framework for the MER task, which
applied BERT and WavLM as encoders. Chen et al. [7] pro-
posed a key-sparse Transformer based on the RoBERTa and
Wav2vec, which focuses more on emotion-related information.
Despite their success, most of them only take labels as super-
vised signals while neglecting their inherent semantic informa-
tion. Intuitively, the label information should be capable of
helping the model to better understand the utterance. As shown
in Figure 1, for the text input, the token “mad” is similar to the
label angry in semantics. As to the speech input, some frame
segments also have in common with the tonal label. Based on
above observation, we argue that the model may be able to lo-
cate the task-oriented salient tokens/frames accurately under the
guidance of the label information. Then, the model can pay
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Figure 1: Visualization of labels. The semantic label presents
the emotion relevant words for each class, and the tonal la-
bel displays the waveforms generated by concatenating the key-
frames under each class.

more attention to the key information and effectively ignore the
interference of redundant information. Therefore, as a kind of
prior knowledge, leveraging label information is essential for
the MER task.

Label embedding is to learn the embeddings of the labels
in classification tasks and has been proven to be effective in
computer vision and natural language processing [8–11], which
enjoys a built-in ability to leverage alternative sources of infor-
mation related to labels, such as class hierarchies or textual de-
scriptions. However, there are rare speech-related work devoted
to this technology. Take MER for example, there exist at least
two obstacles that need to resolve. Firstly, labels are usually
in the form of text. Due to the inherent disparities between the
speech and the text, they cannot be directly exploited in speech-
related tasks. How to obtain representative label embeddings
for the speech modality becomes a big challenge. Secondly,
when introducing the label information, it will increase the dif-
ficulty of multimodal fusion. How to project the text/speech
representations into the same label embedding space and fuse
the multimodal features seamlessly is also a critical issue.

In this work, we propose a novel framework for MER to
tackle the above challenges. We first summarize representa-
tive tokens/frames from the training set for each class as their
descriptions. For text, we extract salient words for each la-
bel based on the frequency of tokens. As for speech, we uti-
lize wav2vec2.0 to discretize the whole dataset, and then ex-
tract salient frames from them. After obtaining that, we further
devise a novel label-enhanced multimodal emotion recognition
model (LE-MER). Formally, given an utterance and the ex-
tracted label information, we first adopt BERT and wav2vec2.0
to learn representations for the text and speech input. To lo-
cate the salient tokens/frames in the utterance, we conduct
label-text/speech interactions by introducing a label-token at-
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Figure 2: The architecture of our proposed model LE-MER.

tention mechanism for the text and a label-frame one for the
speech, which encourages the model to pay more attention to
the emotion-related tokens/frames. Based on the above two
cross-attention maps, we further introduce a label-guided atten-
tion mechanism to fuse the text and the speech. Since the inputs
of this mechanism involve emotion-related information, it is ca-
pable of aligning the text and the speech from the emotional
perspective.

Our main contributions are summarized as follows: 1) To
the best of our knowledge, this is the first work exploring a
label embedding enhanced model for speech emotion recogni-
tion. 2) We propose a novel label-guided cross-attention mech-
anism to fuse different modalities, which is capable of learning
the alignment between speech and text from the perspective of
emotional space. 3) We show the effectiveness of our method
on the IEMOCAP dataset with significant improvements com-
pared with the baseline methods.

2. Proposed Approach
The overview architecture of our proposed LE-MER is illus-
trated in Figure 2. LE-MER consists of three modules: a seman-
tic label enhanced text encoder, a tonal label enhanced speech
encoder, and a multi-modal fusion module with label-guided
cross attention.

2.1. Semantic-label enhanced text encoder

Inspired by the success of Pre-trained Language Model (PLM)
[9, 12, 13] on numerous NLP tasks, we apply the BERT [4] as
the text encoder without loss of generality. For each utterance
ut, we feed it into the BERT and get the sequence representation
Ht ∈ Rlt×dt , where lt is the length of utterance and dt is the
dimension.

In order to get the emotion-aware text representation, we
fuse the semantic label information into the text encoder.
Firstly, we extract the keywords on the text corpus under one
class in the training set to get representative textual label de-
scriptions. Specifically, we adopt the commonly used TF-IDF
[14] algorithm to extract the Top-K words, then we feed these
label descriptions into BERT, and obtain the semantic label em-
bedding Lt ∈ Rc×dt by averaging the token embeddings of all
label descriptions, where c denotes the number of classes.

After embedding both the words and the labels into a joint
space, we can obtain the label-token attention matrix Gt ∈
Rlt×c by computing the cosine similarity between the text rep-
resentation and label embedding as follows:

Gt =
Ht · LT

t

∥Ht∥2∥Lt∥2
(1)

Then we introduced a new objective based on the label-token
interaction to encourage the emotion relevant words to be
weighted higher than the irrelevant ones. Specifically, we con-
duct mean-pooling on the attention matrix Gt along the axis
of sequence length, which is used as the discriminator for each
class to judge the emotional relevance. Finally, we obtain the
predicted logits pt

g and the loss Lt
g:

pt
g = Softmax(Meanpooling(Gt)) (2)

Lt
g = CE(y,pt

g) (3)

where CE(·, ·) refers to the cross entropy loss.

2.2. Tonal-label enhanced speech encoder

The recent success of large pre-trained models [15–22] moti-
vates us to adopt novel, high-level features from self-supervised
learning models. For the audio modality, we use wav2vec2.0 [5]
as our speech encoder. For each waveform of utterance, we ob-
tain a sequence of contextualized representations from the out-
put of wav2vec2.0 Hs ∈ Rls×ds , where ls is the number of
time frames, and ds is the feature dimension.

Similarly, we leverage the label information to obtain the
emotion-aware speech representation. In order to represent the
tonal label, we adopt a unified method as in text label em-
bedding. That is, the key audio frames which contain rep-
resentative tonal information will be extracted to generate the
speech label embeddings for each class. To this end, we need
to obtain the discrete representations of speech first. The quan-
tizer module of the pre-trained wav2vec2.0 discretizes the out-
put of the CNN feature encoder into a finite set [5], enabling
the application of key-frames extraction on the speech data.
In the same way, the TF-IDF is adopted to select the Top-K
emotion-relevant frames under the same class. The embeddings
of these emotion-relevant frames extracted from (codebook of)
wav2vec2.0 will be averaged to produce the final tonal label
embeddings Ls ∈ Rds×c, where ds is the feature dimension
identical to the dimension of Hs.

Through the above way, we have embedded both the speech
and the tonal label into a shared latent space, and then the label-
frame interaction matrix can be computed in the following way:

Gs =
Hs · LT

s

∥Hs∥2∥Ls∥2
(4)

where Gs ∈ Rls×c, and each element indicates the similarity
between the frames and the emotion category. In order to fig-
ure out the emotion related frames with the guidance of tonal
label, we introduced another objective based on label-frame in-
teraction. Specifically, the mean-pooling is conducted on the
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interaction matrix Gs along the frame axis to aggregate utter-
ance level emotional correlation score.

ps
g = Softmax(Meanpooling(Gs)) (5)

The label-frame interaction based objective can be written as:

Ls
g = CE(y,ps

g) (6)

which directly encourages the speech encoder to pay more at-
tention to the emotional frames.

2.3. Multi-modal fusion with label-guided cross attention

Multimodal fusion technology for speech emotion recogni-
tion has been widely studied in recent years, including cross-
attention fusion [23], co-attention fusion [24], score fusion [25],
time synchronous and asynchronous fusion [26], multimodal
transformer [6], and etc. However, all these fusion mechanisms
just devoted to aggregate word and speech embeddings, while
ignored the the rich prior information contained in the emotion
labels. We argue that the emotion labels can serve as a guid-
ance to integrate the two modalities more efficiently. To this
end, we elaborate a novel label-guided cross-attention to fuse
multimodal emotion-related information.

The cross-attention mechanism have been proposed to cap-
ture the fine-grained interactions between the hidden represen-
tations of tokens and frames [23, 27]:

Ar = Softmax(HtH
T
s W) (7)

where Ar ∈ Rlt×ls , and W ∈ Rds×dt . Next, we can ob-
tain the aligned hidden audio representation H′

s by weighting
Hs with cross-attention Ar , and the multimodal features Hm

can be obtained by concatenating the text representation and the
aligned speech representation:

H′
s = ArH

T
s ,Hm = [Ht,H

′
s] (8)

Considering that the text and speech have been projected into
the target emotional space in sections 2.1 and 2.2, we directly
multiply the label-token interaction Gt and the label-frame in-
teraction Gs to obtain the label-guided cross-attention matrix:

Al = Gt ·GT
s (9)

where Al ∈ Rlt×ls , and each element indicates the similarity
between text tokens and speech frames from the perspective of
emotional correlation. Compared with Al, Ar solely represents
the inherent semantic relations between the text and the speech,
instead of emotion specific. To bridge the gap and integrate
the emotion-aware relations into Ar , we propose an Attention
Constraint Module which adopts Al to guide Ar , and we im-
plement it with the mean squared error as follows:

Lc = ||Al −Ar||2 (10)

Finally, we aggregate the emotion-aware multimodal fea-
tures Hm into a fixed-length vector v via max-pooling opera-
tion, and then feed v into a linear projection to obtain the pre-
diction result and optimize it with the cross-entropy loss:

Lm = CE(y, Softmax(Linear(v))) (11)

The overall loss function of the LE-MER is summarized as
follows:

L = µ1Lm + µ2Lc + µ3Lt
g + µ4Ls

g (12)

where µ1, µ2, µ3, and µ4 are hyperparameters.

3. Experiments
In this section, we present the dataset, the results compared with
other state-of-the-art approaches and the related analysis.

3.1. Dataset

We evaluate our proposed model on the commonly used Inter-
active Emotional Dyadic Motion Capture (IEMOCAP) database
[1], which contains approximately 12 hours of audiovisual data.
Among them, the text transcriptions, along with the correspond-
ing audio, consist of five dyadic sessions where actors perform
improvisations or scripted scenarios. To be consist with previ-
ous works [6, 7, 26, 28–30], we conduct experiments on 5531
utterances from four categories: angry, happy (merged with ex-
cited), sad, and neutral. We evaluate the model by a leave-one-
session-out (5-fold) cross-validation (CV) strategy and adopt
the average weighted accuracy (WA) and unweighted accuracy
(UA) as evaluation metrics.

3.2. Experimental Setup

Data preprocessing. For speech modality, the 80-dimensional
Log Mel-spectrograms [31] of each speech waveform are ex-
tracted by a 25ms window size with a 10ms step size and then
normalized to the standardized normal distribution in utterance
level. SpecAugment [32] is also applied to the extracted acous-
tic feature to improve the generalization ability of the model.
For text modality, we use historical utterances to enhance per-
formance, as they can provide contextual information as well
as some additional clues to the current utterance [33]. Specifi-
cally, no more than ten historical utterances are spliced for each
utterance and the maximum token length is limited to 150.
Settings. The pre-trained wav2vec2.0-conformer-BASE [34]
and BERT-BASE [4] model are employed as our speech and text
encoder, respectively. Following [18, 35–37], wav2vec2.0 is
pre-trained on 960h LibriSpeech dataset. In addition, 2nd stage
pretraining is applied to the pre-trained wav2vec2.0-conformer
on the training set. We adopt Adam as our optimizer with a
warm-up of 8000 steps and set the learning rate to 10−6 for the
wav2vec2.0 and 5×10−6 for BERT model, while the batch size
for training is 16. As for hyperparameters in Eq (12), we set µ1,
µ2, µ3, and µ4 to 1, 0.5, 0.2, and 0.2 empirically1.
Baselines. We compare our proposed LE-MER with several
baselines: [6, 7, 28] adopted cross-attention mechanism to fuse
multimodal information, where a modified key-sparse attention
is proposed in [7]. Hou et al. [29] proposed a self-guided modal-
ity calibration network to achieve alignment between audio and
text modalities. Wu et al. [26] proposed a two-branch neural
network to capture correlations between multimodalitly from
both word level and utterance level. Santoso et al. [30] pro-
posed to use the combination of a self-attention mechanism and
a word-level confidence measure (CM) to mitigate the errors in
MER produced by ASR system.

3.3. Main Results

Unimodal Results. As we can observe from Table 1, the perfor-
mance of the text encoder improves significantly after integrat-
ing historical utterances (A2), proving that historical utterances
can provide additional cues to support the current utterances. In
addition, we also investigate the effects of different initializa-
tion for text label embeddings (A3-A5). We can observe that

1The source code will be publicly available at: https://
github.com/Digimonseeker/LE-MER.
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Table 1: Comparison of our unimodal results on IEMOCAP
dataset where “LE” denotes label embedding.

Sys. Model WA(%) UA(%)
A1 BERT 67.34 67.66
A2 + historical utterances 77.46 78.38
A3 + historical utterances + LE (random init) 77.51 78.52
A4 + historical utterances + LE (label words init) 78.03 78.88
A5 + historical utterances + LE (TF-IDF init) 78.11 78.92
B1 wav2vec2.0 73.92 74.48
B2 + 2nd stage 75.73 76.44
B3 + 2nd stage + LE (random init) 76.20 76.80
B4 + 2nd stage + LE (BERT embedding init) 76.48 77.14
B5 + 2nd stage + LE (codebook init) 76.74 77.74

A4 achieves superior performance than A3, while the best re-
sults are achieved by A5, which substantiates that our keyword
initialization scheme yields a more effective and representative
label embeddings than the others. For speech modality, 2nd
stage pretraining before finetuning can improve WA and UA by
at least absolute 1.8 percent (B2 vs. B1). Moreover, speech
label embeddings with all three types of initialization (B3-B5)
bring varying contributions compared to B2. Some potential
prior information from BERT embedding (B4) boosts the per-
formance compared with B3. By getting rid of the shackles of
the modality gap and benefiting from the discretized tonal label
generated from pre-trained quantizer of wav2vec2.0, B5 makes
a further improvement (B5 vs. B4) and achieves the best result.
Multimodal Results. In Table 2, we compare our multimodal
results on the IEMOCAP dataset with the existing state-of-the-
art methods, which share the same setting of data preprocess-
ing with us, for a fair comparison. It shows that our proposed
approach achieves state-of-the-art results compared to the oth-
ers in terms of both WA and UA. Here we also present the re-
sult obtained by the score fusion scheme, which simply sums
the logits produced by two unimodal models for predictions.
This straightforward scheme can achieve favorable result that
outperforms all the baselines, indicating that our label embed-
dings can facilitate unimodal encoders to locate the salient to-
kens/frames relevant to the specific emotion, thus yielding bet-
ter result. Compared with methods based on attention mecha-
nism, such as [6, 7], our model achieves superior performance,
which proves that our proposed label-guided attentive fusion
module can serve as a bridge to leverage cues from multimodal-
ity to integrate emotional information more effectively.

Table 2: Comparison of our multimodal results with previous
works on IEMOCAP dataset.

Model WA(%) UA(%)
Chen et al. [7] 74.30 75.30
Chen et al. [28] 74.92 76.64
Hou et al. [29] 75.60 77.60
Wu et al. [26] 77.57 78.41
Santoso et al. [30] 78.40 78.60
Li et al. [6] 80.36 81.70
Our Score Fusion 81.32 82.18
Ours 82.40 83.11

3.4. Discussion

Hyper-parameter Tuning of K. To explore the optimal num-
ber of frames for the tonal label, we conduct a grid search to
obtain its value. As shown in Figure 3, when K is larger than
100, both WA and UA decrease to some extent, implying that
label embeddings with larger K contain some redundant infor-
mation that is irrelevant with the corresponding type of emo-
tion. Vice versa, label embeddings with smaller K lack enough
emotion-related information, causing performance degradation.
Therefore, we set K to 100 for the tonal label. As for the se-
mantic label, we explore the optimal K with the same method,
and the best K is set to 9. For sake of repetition, we omit the
process here.

75.50

76.00

76.50

77.00

77.50

78.00

50 75 85 95 100 105 115 125 150 200

WA

UA

Figure 3: Effect of K for speech label embeddings initialization.

Ablation study of Attention Constraint. In this section, we
further explore how to utilize the label-guided attention matrix
to improve the model performance in terms of modality fusion,
and we present the corresponding results in Table 3. A subtle
decrease can be observed from C1 to C2 in terms of UA, reveal-
ing the superiority of the attention constraint scheme against
simple summation of label-guided attention Al and vanilla at-
tention Ar . We can attribute this performance gap to adopting
attention constraint, as it provides a more delicate way to craft
multimodal features Hm to be label-aware under the supervi-
sion of Al. Furthermore, we perform multimodal fusion with
only Al (C3) or Ar (C4). Further performance degradation can
be observed by comparing either C3 or C4 with C2, validating
the necessity of the interaction between Al and Ar .

Table 3: Results of comparison between different fusion meth-
ods utilizing label-guided attention Al and vanilla attention Ar

Sys. Model WA(%) UA(%)
C1 Attention Constraint 82.40 83.11
C2 Ar +Al 82.39 82.75
C3 only Al 81.29 81.37
C4 only Ar 81.08 81.68

Attention Visualization. To demonstrate the effectiveness of
our unimodal label embeddings, we perform the visualizations
of both Gs and Gt on one utterance in IEMOCAP and present
them in Figure 4. In this example, waveform is aligned with the
tokenized text, and both Gs and Gt have been averaged over
the class dimension to generate the vectors G̃s and G̃t. Results
show that the G̃s assigns larger attention weights to emotion-
related speech segments, while G̃t has higher weights on some
emotional words, such as “cool”. This reveals that our unimodal
label embeddings can effectively guide the encoders to focus on
emotion relevant information from the input.

That ’ s so cool .

෩GS
෩Gt

Figure 4: Visualization of G̃s and G̃t.

4. Conclusions
In this paper, we presented LE-MER, a novel multimodal fu-
sion framework for speech emotion recognition, which takes ad-
vantage of the both the textual and speech label information to
extract the emotional token and frames, respectively. By map-
ping the speech and text representations to a common emotional
space, we can learn the alignment between the text words and
speech frames and fuse the emotional information more effi-
ciently. Experimental results on the public IEMOCAP dataset
demonstrated the superior performance of LE-MER and the im-
portance of each component. In the future, we will explore how
to extend this method to other speech tasks.
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