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Abstract
We propose a novel model compression approach using

multiple-teacher pruning based self-distillation for audio-visual
wake word spotting, facilitating compact neural network imple-
mentations without sacrificing system performances. In each
stage of the proposed framework, we prune a teacher model ob-
tained in the previous stage to generate a student model, then
fine-tune it with teacher-student learning and use it as a new
teacher model for following stages. A normalized intra-class
loss is designed to optimize this pruning based self-distillation
(PSD) process. Both single-teacher PSD (ST-PSD) and multi-
teacher PSD (MT-PSD) are adopted in the fine-tuning process
each stage. When tested on audio-visual wake word spotting
in MISP2021 Challenge, the two proposed techniques outper-
form state-of-the-art methods in both system performances and
model efficiencies. Moreover, MT-PSD that leverages upon
the complementarity of multiple teachers obtained in different
stages also outperforms ST-PSD.
Index Terms: teacher-student learning, knowledge distillation,
normalized intra-class correlation, structured pruning, audio-
visual wake word spotting

1. Introduction
The goal of audio-visual wake word spotting (AVWWS) is to
recognize a predefined wake word [1]. Generally, WWS mod-
ules are limited by restricted computational and memory re-
sources. By integrating visual information, AVWWS systems
can boost the performance of an audio-only system [2, 3, 4].
However, the increased number of parameters in AVWWS sys-
tems compared to the audio-only systems may hinder their de-
ployment on mobile devices. Accordingly, designing an effec-
tive compression method for neural network based AVWWS
models is crucial to ensure the practicality of audio-visual sys-
tems. Pruning is one method to compress the neural networks
[5, 6], and it can be categorized into structured and unstructured
pruning [7, 8, 9]. Filter pruning is one type of structured prun-
ing that can be realized by Taylor Series expansion, geometric
median (FPGM) and other methods [10, 11, 12]. Channel-level
pruning [13, 14] using batch normalization (BN) layers can also
yield promising results. Furthermore, the training and pruning
approaches are also very important. In 2019, lottery ticket hy-
pothesis (LTH) [15] was proposed by combining existing prun-
ing and training modes. Researchers have compared various
strategies based on LTH [16, 17, 18], and one effective scheme
is to use learning rate rewinding [18]. Recently, CPLR [19]
by integrating channel-level pruning and learning-rate rewind-
ing strategies was proposed. The channel-level pruning method
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was originally a one-shot pattern but has since been improved
to an iterative pattern, which is further guided by the learning
rate rewinding strategy [18] in the case of CPLR. It leverages
upon both channel-level and LTH pruning. When tested on the
AVWWS task, CPLR yields consistent improvements in both
system performance and model efficiency.

Knowledge distillation (KD) is another effective network
compression method, which enhances the performance of
smaller models by transferring knowledge from a larger model
during training [20, 21, 22]. The traditional approach to KD is
to match the probability prediction scores between the teacher
and student models using Kullback-Leibler (KL) divergence
[20, 23, 24]. Recently, several studies [25, 26, 27] have been
conducted to tackle the problem of poor learning issues in the
student network when the size of student and teacher models
differs significantly. For instance, TAKD [26] reduces the gap
between teacher and student networks by incorporating an inter-
mediate teaching assistant of moderate model size. DIST [28]
employs a correlation-based loss to explicitly capture the intrin-
sic inter-class relations from the teacher. In addition, leverag-
ing upon distilled information from multiple teacher models can
also improve the performance of the student model [29, 30, 31].
For example, researchers use knowledge distilled from multiple
acoustic models to construct accurate and compact neural net-
works [30], and CA-MAD [31] further introduces sample-wise
reliability for each teacher prediction.

Despite their advantages, the compression methods dis-
cussed above also come with a few limitations. For instance,
pruning-based methods, like CPLR, tend to fall short of achiev-
ing high compression ratios. Moreover, the pruned network’s
performance can deteriorate rapidly when the network has lim-
ited parameters, which restricts its ability to learn from the
ground-truth labels. On the other hand, KD-based methods,
such as DIST, lack explicit guidance on how to generate the
optimal student model for learning knowledge from the given
teacher model, and choosing an unsuitable student model can
lead to inefficient distillation. Additionally, most KD-based
methods are a one-shot compression process, which limits their
effectiveness in compression. In this paper, we proposed a
data-driven network compression approach based on structured
pruning and knowledge distillation called pruning based self-
distillation (PSD), which leverages the complementarity be-
tween pruning-based methods and KD-based methods. The
PSD approach we propose is a multi-stage method, wherein
each stage involves generating an optimal student model from
the previous teacher model using teacher-student pruning. Sub-
sequently, the student model is fine-tuned using teacher-student
fine-tuning to attain high-performance level and is then em-
ployed as the new teacher model for the following stages. In
addition, a normalized intra-class loss is designed for teacher-
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Figure 1: Pruning based self-distillation for designing compact audio-visual network.

student fine-tuning. We also adopt both single-teacher and
multi-teacher learning strategies during the fine-tuning process,
namely ST-PSD and MT-PSD. We tested the proposed ap-
proach on the MISP2021 AVWWS baseline system [32] and
achieved a performance gain of 8.3% relative improvement us-
ing a lightweight model that only contained 5.9% of the original
parameters.

2. Proposed Self-Distillation Frameworks
In this section, we introduce the proposed compression frame-
work, which is illustrated in Figure 1. In the first stage, the ini-
tial model is pre-trained to the early-stop point, obtaining initial
teacher model Teacher.0. Then, the model is pruned to obtain
the next stage model Student.1. In the second stage, student
model is updated with the guidance of the first-stage teacher
model to become the second-stage teacher model Teacher.1.
The student model and teacher model share the same network
structure within the same stage, but they have different param-
eters. These aforementioned steps are repeated through several
stages to obtain the most compact model. It is worth noting that
only teacher model of last stage or all teacher models of previ-
ous stages can be used as guidance to fine-tune the generated
student model results in varying guiding effects.

2.1. Initial teacher model

Firstly, we pre-trained the initial model with several data aug-
mentation strategies mentioned in [32] to generate the first
teacher model. The binary cross-entropy (BCE) loss function
is used in our task. The sparse-training is also adopted to make
the scale factor γ in BN layers more discriminating to achieve
more accurate pruning of insignificant channels. The loss func-
tion used during pre-training is defined as follows:

L =
∑

(x,y)

l(f(x, θ, γ), y) + λ
∑

γ∈BN

h(γ) (1)

h(γ) = |γ| (2)

The sparse regular term λ
∑

h(γ) ( L1-norm was selected in
our algorithm ) is added to the standard training loss function.
f(x, θ, γ) is the network function given input data x, parameter
set θ and the BN scale factor set γ. y represents the label of
each input sample.

2.2. Teacher-student pruning

The optimal student model of a new stage is generated by prun-
ing the teacher model of previous stage. We focus on eliminat-
ing less-significant channels in convolution and BN layers [13].
This pruning technique is a two-phase process, which can be
outlined as follows, where k represents the pruning rate:

1. Mask generating

• Copy all the factors in all BN layers of the teacher model
to a list, then sort the list in ascending starting from the
smallest factor, generating the new list: Γbn[0 : N ].

• Determine the pruning threshold: thre = Γbn[k ·N ].
• Generate pruning mask for all BN layers based on the mag-

nitude of the factors and threshold.

2. Pruning based on mask

• Prune off the channels of BN layers based on the mask.
• Prune off the channels of each convolution layer that are

corresponding to the pruned channels in the BN layer fol-
lowed.

• Obtain the pruned model as the new student model.

Notably, some layers are interconnected with other layers in the
residual block of ResNet [33], and we create the identical mask
for these layers by weighted factors of the associated BN layers.

The student model generated via channel-level pruning ef-
ficiently eliminates superfluous connections from the previous
teacher model, leading to greater utilization of weights. At the
same time, it preserves those connections that convey compara-
tively significant information from the previous teacher model,
ensuring that critical information is not lost during the following
teacher-student fine-tuning process.

2.3. Teacher-student fine-tuning

In this section, we discuss two forms of teacher-student fine-
tuning: Learning from teacher of single stage (ST-PSD) and
learning from teachers of multiple stages (MT-PSD). The learn-
ing rate rewinding strategy is used to control the learning rate
of the fine-tuning process.

2.3.1. Learning from teacher of single stage (ST-PSD)

Considering the structural divergence between the student
model and teacher model, we allow the student model to learn
from the nearest teacher model, as it has a more akin structure
to the student model, thereby rendering the distillation process
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more effective. In other words, similar to TAKD [26], we uti-
lize the nearest teacher model as an assistant model to guide the
fine-tuning process of the student model.

Formally, the output prediction vector of the student model
of n-th stage and all previous teacher model can be represented
as Ysn ,Ytn−1 ,Ytn−2 , ...,Yt0 ∈ RB×1, where B denotes the
batch size, sn represents student model of n-th stage and ti rep-
resents teacher model of i-th stage. The loss function of student
model, with ground-truth labels L ∈ RB×1, can be denoted as

Lsn = BCEloss(Ysn ,L) + λ ·
∑

γn∈BN

h(γn) (3)

where γn is the score factor of BN layers in n-th student model
and h(γn) is illustrated in Eq.2. The teacher-student loss func-
tion between Ysn and Yti is expressed as

Lti = 1− ρp(fnorm(Y
sn), fnorm(Y

ti)) (4)

Same with DIST [28], Pearson’s similarity is adopted [34],

ρp(u,v) =
Cov(u,v)

Std(u)Std(v)

=

∑B
i=1(ui − ū)(vi − v̄)√∑B

i=1(ui − ū)2
∑B

i=1(vi − v̄)2
(5)

fnorm is the normalized function to balance the impact of each
sample in the batch, we employ linear normalized function, as
shown in Eq. 6

fnorm(Y) =
Y∑B

k=1 Yk

(6)

To summarize, the single-teacher loss can be expressed as be-
low, where α denotes the weight factor:

Ln
ST = Lsn + α · Ltn−1 (7)

2.3.2. Learning from teachers of multiple stages (MT-PSD)

Using the ST-PSD approach, various stages of models are ob-
tained. Demonstrated in Section 4.2 , We have observed that
these models seem to be complementary in terms of their pre-
dictions.

Therefore, it is a logical notion to have the student model of
the n-th stage learn from all teacher models of previous stages
to achieve a complementary distillation effect, the KD loss of
MT-PSD can be expressed in Eq. 8, as follows:

Ln
MT = Lsn + α ·

n−1∑

i=0

βn−1−iLti (8)

where β ∈ (0, 1) is the forgetting factor over stages. There are
two main reasons for adopting the forgetting factor: Firstly, the
student model and teacher model that are closer in stage share a
stronger structural correlation, which enables the student model
to learn better from the closer teacher model. Secondly, the
closer teacher model usually performs better, and assigning a
higher weight can boost the performance of the student model.

Learning from teachers of multiple stages can be viewed
as a type of system fusion approach that does not require ad-
ditional parameters. The teacher models from different stages
offer complementary knowledge that can be learned by the stu-
dent model to enhance its performance. The forgetting factor
assigned to each stage enables the student model to learn more
significant information while discarding less important infor-
mation, resulting in improved overall performance.

3. Application to AVWWS
The proposed compressing approach is evaluated on the
AVWWS task based on the MISP2021 challenge [32]. We use
the official baseline system, whose details will be elaborated in
the following subsections.

3.1. Single WWS subsystems

The baseline WWS system consist of audio subsystem and
video subsystem. The audio-only system consists of two lay-
ers of 2D-convolution layers as frontend, one long short-term
memory (LSTM) layer and three convolution layers as back-
end. We added one BN layer after per convolution layer to ex-
ecute channel-level pruning. The video-only system consists
of a ResNet-18 [33] with 3D-convolution layers as frontend,
an LSTM layer and three convolution layers as backend. The
ResNet-18 has been pre-trained on the lip-reading task [32].

3.2. Audio-visual fusion

Consistent with [32], we adopted the decision-level fusion com-
bining the posterior probabilities from separate audio and visual
WWS subsystems. Whose principle is as follows:

PAV = ka × PA(yA|fA) + kv × PV(yV|fV) (9)

where PA(yA|fA) and PV(yV|fV) are the posterior probabili-
ties of wake word presence generated by input features, respec-
tively. ka and kv are the weights of audio-only and video-only
systems. The output of systems is compared with the preset
threshold (thA, thV, thAV) after the sigmoid operation.

4. Experiments and Results
To test the efficiency of the proposed compression approach,
several related experiments have been conducted.

4.1. Dataset and metric

We conduct the experiments on the MISP2021 AVWWS dataset
[32] in this research. The wake word is “Xiao T Xiao T”.
The combination of false reject rate (FRR) and false alarm rate
(FAR) is adopted as the evaluation metric, whose principle is as
follows:

Score = FRR+ FAR (10)
The lower Score, the better the system performance.

4.2. Complementarity of multiple teacher models

To demonstrate complementary in various stages of teacher
models in terms of prediction,

we apply the proposed ST-PSD approach to audio-only and
video-only systems and perform fusion over stages, whose prin-
ciple is as follows:

Pmul
n =

1

n

n∑

i=0

Pi(y|f) (11)

where n is the pruning rounds, Pi(y|f) is the posterior prob-
abilities of wake word presence generated by input features of
model of i−th stage. The output of systems is compared with
preset threshold, the results on far-field are shown in Figure 2.

Based on the results above, it is evident that the fusion sys-
tems surpass the signal systems in terms of performance. More-
over, the incorporation of teacher models from more stages
leads to significant improvement in performance, this indicates
the complementary nature of multiple teacher models.
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Table 1: Performance comparison of different compression methods on AVWWS system.

Methods Audio-only system Video-only system Fusion system
Parameters Score Parameters Score Parameters Score

Baseline [32] 2.68M(100%) 0.2610 13.03M(100%) 0.5840 15.75M(100%) 0.2510
Channel-level pruning [13] 1.32M(49.2%) 0.2805 4.20M(32.2%) 0.5692 5.52M(32.2%) 0.2653

LTH-IF [35] 0.56M(20.9%) 0.2656 6.91M(53.0%) 0.5631 7.47M(47.4%) 0.2500
CPLR [19] 0.56M(20.9%) 0.2611 1.85M(14.2%) 0.5855 2.41M(15.3%) 0.2432
DIST [28] 0.82M(30.6%) 0.2078 2.18M(16.7%) 0.5102 3.00M(19.0%) 0.1906

ST-PSD (ours) 0.52M(19.4%) 0.2017 1.06M(8.1%) 0.5086 1.58M(10.0%) 0.1877
MT-PSD (ours) 0.28M(10.4%) 0.1978 0.66M(5.1%) 0.4813 0.94M(5.9%) 0.1679
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Figure 2: Performance comparison of single and fusion
systems of ST-PSD on separate subsystems of AVWWS.
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Figure 3: Performance comparison of ST-PSD and MT-PSD on
separate audio-only and video-only systems.

4.3. ST-PSD vs MT-PSD

We conducted a performance comparison of the compact mod-
els generated by ST-PSD and MT-PSD individually, the results
are shown in Figure 3. Weight Sparsity Ratio is the rate of the
pruned parameters with the original parameters.

The results indicate that MT-PSD is generally more effec-
tive than ST-PSD. The compact systems generated by MT-PSD
obtain lower Score than those produced by ST-PSD. Addition-
ally, MT-PSD can achieve a higher weight sparsity ratio without
any compromise on performance.

Additionally, it is noteworthy that the performance of ST-
PSD and MT-PSD on both systems steadily improves in the
initial few stages, and then declines when exceeding a certain
weight sparsity ratio. Figure 4 illustrates the weight distribution
in all BN layers for each round.

The results suggest that in the initial few rounds, minor pa-
rameters are pruned and the weights of the compact network
display a gaussian-like pattern. As the network structure be-
comes more compressed, the weights tend to be averaged, mak-
ing it difficult to distinguish between insignificant channels.
Further compression may then prune off some essential chan-
nels, leading to a decline in system performance.

Figure 4: Distribution of weights in all BN layers during the
multiple stages of MT-PSD.

4.4. Comparison with other techniques
We further compared the performance of the proposed method
with other compression methods on the same AVWWS system.
The results are presented in Table 1.

Experimental results indicate that the total AVWWS net-
work parameters are compressed to 5.9% by MT-PSD, resulting
in a decrease of 0.82 in the Score. MT-PSD achieves optimal
fusion performance with minimal parameter usage, outperforms
other pruning based and KD based compression methods.

5. Summary
We propose a multi-stage compression approach combining
pruning and knowledge distillation into each stage. Using a spe-
cially designed normalized intra-class loss, our approach em-
ploys channel-level pruning to generate compact student models
from previous teacher models and utilizes knowledge distilled
from previous teacher models to fine-tune the student model of
the current stage, then use it as a teacher model in the next stage.
Evaluated on the MISP2021 AVWWS challenge data set our
proposed ST-PSD and MT-PSD frameworks achieve good re-
sults in both system performances and model efficiencies.
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