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Abstract
Recently, transformer-based models have shown leading per-
formance in audio classification, gradually replacing the domi-
nant ConvNet in the past. However, some research has shown
that certain characteristics and designs in transformers can be
applied to other architectures and make them achieve simi-
lar performance as transformers. In this paper, we introduce
TFECN, a pure ConvNet that combines the design in transform-
ers and has time-frequency enhanced convolution with large
kernels. It can provide a global receptive field on the fre-
quency dimension as well as avoid the influence of the con-
volution’s shift-equivariance on the recognition of not shift-
invariant patterns along the frequency axis. Furthermore, to
use ImageNet-pretrained weights, we propose a method for
transferring weights between kernels of different sizes. On the
commonly used datasets AudioSet, FSD50K, and ESC50, our
TFECN outperforms the models trained in the same way.
Index Terms: audio classification, large kernel ConvNet, trans-
fer learning

1. Introduction
Audio classification, which refers to mapping an audio segment
into one or more sound event categories, is an active research
topic in acoustic signal processing. For the past few years,
convolutional neural networks (ConvNets) have been the main-
stream model for this task [1, 2, 3], but recently, their domi-
nance has been significantly challenged by transformer-based
models. Transformers were first used in natural language pro-
cessing [4], and later, Vision Transformers [5, 6, 7] introduced
them to computer vision and became a hot research topic. Start-
ing with the Audio Spectrogram Transformer [8], an increas-
ing number of transformer-based models for audio classifica-
tion have emerged and continue to set new records on various
datasets [9, 10]. As the knowledge of transformers has matured,
researchers have begun to examine certain characteristics or de-
signs of transformers to analyze their superior performance. In-
spired by the global receptive field of the self-attention mech-
anism, RepLKNet [11] increased the receptive field of Con-
vNets by introducing very large kernels. Mlp-Mixer [12] and
Metaformer [13] adopted the token-mixer and channel-mixer
design of transformers and replaced the self-attention mecha-
nism with an MLP or even an extremely simple pooling layer,
empirically demonstrating that the framework of transformers
plays an important role in their performance. ConvNext [14] an-
alyzed the design space of transformers in detail and gradually
introduced the designs into a traditional ResNet [15] so that its
performance gradually approached and exceeded transformers.
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While these works summarized a variety of methods to improve
model performance using the design of transformers, no work
has yet attempted to use these methods to improve a ConvNet
for audio classification, although ConvNet tends to have fewer
parameters, less computation, and a simpler structural design
compared to a transformer.

Unlike an image, the two axes of a spectrogram represent
the individual frequency components and the time frames. Pat-
terns aligned with the time axis are shift-invariant, similar to the
objects in an image, which means that the shift of a visual pat-
tern along the time axis can be seen as a change in the spatial
position of an object in the image. In contrast, patterns dis-
tributed along the frequency axis are not shift-invariant [16],
which means that if the visual patterns of a sound event category
shifted along the frequency axis, the category or semantic rep-
resented by the patterns is likely to have changed, as shown in
Figure 1(a). HTS-AT [9] is an audio classification model based
on the Swin-Transformer [6]. It arranged spectrogram patches
in a time-frequency-window order to focus patches with differ-
ent frequency components of the same time frame into a single
attention window, making the model predict only along the time
axis. Although the sliding window that shifts along both axes
in the 2D conv can naturally fit the shift-invariant patterns dis-
tributed along the time axis in the spectrogram, it also conflicts
with the not shift-invariant patterns on the frequency dimen-
sion. MMDenseNet [17] divided the frequency dimension of
the spectrogram into multiple frequency bands and convolved
them separately using different kernels. This approach avoided
recognizing the same visual patterns as having the same seman-
tics along the entire frequency axis with the same weights but at
the expense of the receptive field on the frequency dimension.
These works inspired us to propose a new conv method to better
fit spectrogram features.

Currently, for audio classification, the best models are al-
most all transformer-based models. To demonstrate that a pure
ConvNet can still achieve leading performance, we introduce
the time-frequency enhanced ConvNet (TFECN), which com-
bines the generic architecture design in transformers and im-
proves the convolution for spectrogram features. The main con-
tributions of our work are as follows:
• TFECN outperforms models trained in the same way (Ima-

geNet pretraining, then supervised training on AudioSet, and
fine-tuning for downstream tasks) on three datasets, AudioSet
[18], FSD50K [19], and ESC50 [20], demonstrating that a
pure ConvNet can still achieve advanced performance in au-
dio classification.

• Our proposed time-frequency enhanced convolution, not only
releases the shift-equivariance of convolution on the fre-
quency dimension but also provides the global receptive field
on the frequency dimension.
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Figure 1: Left shows the overall architecture of TFECN. For the Norm layer, we use Layer Normalization [21] rather than Batch
Norm [22], which has shown effectiveness in recent research [14]. We use Squared ReLu [23] as the activation function, similar to the
pretrained model [24]. Right is an illustration of the FEConv. For convenience, we assume that all regions covered by conv kernels
(blue) in the input feature map (X ∈ RT×F , yellow) have the same value and represent the output feature map (orange) as a one-
dimensional form that retains only the frequency dimension.

• To use the pretrained weights provided by previous work, we
propose a method to transfer weights from small kernels to
larger kernels. This method allows models with large kernels
to utilize models with similar structures to them but using
smaller kernels for transfer learning.

2. Time-frequency enhanced ConvNet
2.1. Model architecture

The overall architecture of TFECN is shown on the left in Fig-
ure 1. Our model is based on the common four-stage design of
transformers with a stage compute ratio of 3:3:9:3. The differ-
ent stages are separated by downsampling layers using a 3×3
conv with stride 2. At the beginning of the model, a patchify
layer consisting of 7×7 conv with stride 4 is used to generate
the spectrogram patches. Inside the basic blocks that make up
the stage, there is first a conv block that mainly recognizes spa-
tial patterns, which uses the inverted bottleneck design [25] with
an expansion ratio of 2. In the inverted bottleneck, the feature
dimension is first expanded by a pointwise conv with 1×1 ker-
nels, then the spatial patterns are captured by a depthwise conv
in which the number of groups is equal to the number of chan-
nels, and finally, the feature dimension is recovered by another
pointwise conv.

In the depthwise separable conv, which consists of point-
wise conv and depthwise conv, the pointwise conv is respon-
sible for capturing cross-channel patterns. In the inverted bot-
tleneck, we believe that pointwise conv is more likely to apply
many different projections of feature maps into different fea-
ture subspaces, as in the case of the Q, K, V, and head trans-
formations in the transformers’ self-attention mechanism. In
this way, the inter-channel communication of the model may be
reduced. Transformers added an MLP after the self-attention
layer as a complement to improve this problem. Inspired by
this, we added an additional MLP after the inverted bottleneck
to increase the communication between the different feature di-
mensions. In addition, for more efficient training, we set the
learnable scale and bias after the activation function and scaled
the shortcuts in the last two stages [24].

2.2. Time-frequency enhanced convolution

Since patterns distributed along the frequency axis in the spec-
trogram are not shift-invariant, a kernel smaller than the feature
map sliding within the feature map can interfere with recogni-
tion, especially for the top layer of the model that recognizes
high-level semantic features. As shown in Figure 1(a), the same
visual patterns at different positions in the feature map are con-
nected to the neurons through the same weights, which eventu-
ally produce the same output:

w: ⊙ x = w: ⊙ x (1)

where w: denotes all columns in the kernel. This means that
the pattern at different positions has the same semantics. In the
image, this corresponds to reality, for example, a dog moving
from left to right. But when a time-frequency pattern moves
from low to high frequencies in a spectrogram, the semantics
may change, for example, from crying to laughter. To pre-
vent the kernel from recognizing the same visual patterns as the
same semantics along the frequency axis, we first expand the
kernel along the frequency direction until it covers the whole
frequency dimension so that the weights connecting the neu-
rons to the feature maps are always different when the kernel
slides along the frequency axis. As shown in Figure 1(b), even
two identical visual patterns connected to neurons with different
weights will eventually produce different outputs, and different
outputs mean different semantics, which can be expressed as

wp:q ⊙ x ̸= wi:j ⊙ x (2)

where wp:q denotes columns p to q in the kernel. Finally, to
ensure that each neuron has a receptive field covering the entire
frequency dimension, we continue to expand the kernel along
the frequency axis until Equation 3 is satisfied.

Kf −
⌊
Kf

2

⌋
= F (3)

For an input feature map X ∈ RT×F , F denotes its size along
the frequency direction. Kf denotes the size of the conv kernel
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along the frequency direction. In this way, after padding the in-
put feature map so that its size does not change before and after
conv, it is still guaranteed that the leftmost and rightmost neu-
rons in the output feature map can cover the entire frequency
dimension, as shown in Figure 1(c). We call the depthwise
conv using such kernels the frequency enhanced convolution
(FEConv).

Considering that temporal cues also play an important role
in recognizing some sound events, we introduce another ker-
nel and extend it along the time direction to increase the recep-
tive field of the time dimension so that it can better recognize
the shift-invariant features on the time dimension. We call the
depthwise conv using such kernels the time enhanced convolu-
tion (TEConv). Finally, we use the time-frequency enhanced
convolution (TFEConv) consisting of TEConv and FEConv to-
gether to replace the depthwise conv in the inverted bottleneck.
In TFEConv, we sum the weighted outputs of TEConv and FE-
Conv using two learnable weight parameters wt and wf , which
can be expressed as Equation 4.

TFEConv(X)=wt·(TEConv(X))+wf ·(FEConv(X))
(4)

2.3. ImageNet pretraining

We perform transfer learning using the ImageNet-pretrained
model, as in previous works [2, 8, 9, 10], and using con-
vformer s18 384 in21ft1k 1 as the pretrained model. However,
this pretrained model has kernel sizes of 7×7 and is not directly
transferable to our model. Inspired by the method of merg-
ing kernels of different sizes in structural re-parameterization
[26, 27], we first initialize two large kernels (LKs, LK ∈
RKt×Kf ) of the same size as in TEConv and FEConv and
later assign weights to the central regions of the two large ker-
nels using the weights of the pretrained small kernels (PSKs,
PSK∈ RKs×Ks and Ks ≤ min(Kt,Kf )). We call the ker-
nels formed in this way the pretrained large kernels (PLKs, PLK
∈ RKt×Kf ). Because of the additivity of convolution, the conv
using PLKs can be expressed as

X ⊗ PLK = X ⊗ LK +X ⊗ PSK (5)

where X ∈ RT×F denotes the input and ⊗ denotes the convo-
lution operation. To avoid undermining the knowledge learned
from pretraining, we use zero to initialize LKs. Thus, at the
beginning of training,

X ⊗ PLK = X ⊗ PSK (6)

Due to the pretrained weights, weights with a value of zero in
PLKs can also be updated. Finally, the weights of PLKs are
used to initialize the TFEConv weights.

In fact, transferring weights between kernels of the same
size is equivalent to initializing a kernel of the same size as the
pretrained kernel using zero and adding the pretrained kernel to
it. Thus, our proposed weight transfer method simply replaces
the kernel of the same size with a larger kernel and does not
impair the transfer of the knowledge learned from pretraining
between different kernels.

3. Experiments
3.1. Datasets

AudioSet [18] is the largest public dataset for audio classifi-
cation, consisting of over 2 million 10-second audio clips ex-

1https://github.com/sail-sg/metaformer

tracted from videos on YouTube and manually labeled into 527
categories. The entire dataset is officially divided into a bal-
anced training set, an unbalanced training set and an eval set.
Considering that the videos on YouTube disappear over time
and to ensure the comparability of our experimental results, we
use the method provided by previous work [1] to download the
dataset. Finally, we downloaded 1,912,137 clips from the un-
balanced training set, 20,550 clips from the balanced training
set, and 18,887 clips from the eval set. We use the full training
set consisting of the unbalanced training set and the balanced
training set to train our model and evaluate our model on the
officially divided eval set.

FSD50K [19] is the second largest public dataset of human-
labeled sound events containing 51K audio clips picked from
Freesound with an average duration of 7.6 s and manually la-
beled into 200 sound event categories drawn from the AudioSet
ontology. We use the officially split training set, validation set,
and eval set. Considering the variable clip lengths in FSD50K,
we first unify all the clip lengths to 10 s. For clips longer
than 10 s, we divide the original clips into multiple samples
with a certain overlap. Specifically, we use a 3 s overlap to
segment the clips in the training set, while the validation and
eval sets are segmented without using the overlap. In addition,
FSD50K’s carefully curated evaluation set reduces the impact
of noise on the metrics that reflect model performance, more ac-
curately reflecting the differences in performance between mod-
els. For this reason, we chose to conduct ablation experiments
on FSD50K.

ESC50 [20] contains 2000 5-second audio clips and is man-
ually labeled using 50 categories. we repeat each clip twice to
be consistent with the 10-second length in the other two datasets
and perform 5-fold cross-validation using the official division of
5 folds.

For AudioSet and FSD50K, we use mean Average Precision
(mAP) as the metric, and for ESC50 we use Accuracy (Acc) as
the metric. All metrics are chosen to facilitate comparison with
existing methods.

3.2. Implementation details

First, we convert each clip to monophonic, resample to 32 kHz,
and unify to 10 s. Then, a Hann window of size 1024 and a hop
size of 320 are used to compute STFTs, and the frequency range
is limited to between 50Hz and 14 kHz. Finally, 128 Mel filter
banks are used to compute the log Mel spectrograms, resulting
in spectrogram features with the shape (1001, 128).

We denote the size of the TFEConv in a stage as
(Kt,Kf ,Ks), where Kt is the size along the time axis in
TEConv, Kf is the size along the frequency axes in FEConv,
and Ks is the size of the remaining directions in the two ker-
nels. After patchify stem and downsampling, the sizes of the
features along the frequency axis in the four stages are 32, 16,
8, and 4. According to Equation 3, we set Kf to 31, 15, and 7 in
TFEConv for the last three stages. Due to the weaker conv layer
in the first stage and the larger feature map size, we set Kf to 31
so that it covers almost the entire frequency dimension, releas-
ing the shift-equivariance while reducing FLOPs. Finally, we
set the kernel sizes for the four stages to [(15, 31, 7), (15, 31,
7), (15, 15, 7), (15, 7, 7)] and use the efficient implementation of
large kernel depthwise conv in RepLKNet [11]. In addition, to
avoid corrupting the learned knowledge when using pretrained
weights, we set the defaults of wf and wt in TFEConv to 0.5 in
all four stages.

Mix-up [28] with α=0.5, SpecAug [29] with a maximum
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Table 1: The results of ablation experiments on FSD50K

Params MACs val mAP eval mAP

MobileNetV2-like 11.0M 4.0G .529 .497
DSCN 25.1M 10.1G .549 .519
TFECN 26.7M 11.9G .557 .515

DSCN-ImgP 25.1M 10.1G .622 .598
TFECN-ImgP 26.7M 11.9G .625 .601

of 256 time-mask, 64 frequency-mask, and label smoothing
with smoothing=0.1 are used for data augmentation. All mod-
els are trained using the AdamW optimizer (β1=0.9, β2=0.999,
eps=1e-8, decay=0.05). After 10 epochs of warm-up, the learn-
ing rate first grows linearly from 0 to 4e-4 and then decays to
1e-7 after 40 epochs using the cosine annealing scheduler. For
ESC50, the training continues for a total of 100 epochs with a
learning rate of 1e-7. We also use the exponential moving av-
erage (EMA) optimization strategy to improve the generality of
the models. For different classifications, binary cross-entropy is
used as the loss for AudioSet and FSD50K, and cross-entropy
is used for ESC50. For AudioSet, we use the weighted sam-
pler [2, 10], to sample 200K samples from the full training
set in each epoch and train on 4 NVIDIA A-100 GPUs with a
batch size of 128 for approximately 10 hours. For FSD50K and
ESC50, use the entire training data as the training set for each
epoch and train on 2 NVIDIA A-100 GPUs with batch sizes of
64 and 16, respectively.

3.3. Results

3.3.1. Ablation experiments

The ablation experiments start with a MobileNetV2-like model,
which has two simplifications compared to TFECN: remov-
ing the MLP and replacing TFEConv with depthwise conv
with 7×7 kernels. Then, we reintroduce the MLP. Since MLP
is equivalent to pointwise convolution in depthwise separable
conv and inverted bottleneck is equivalent to depthwise conv,
we call this model depthwise separable ConvNet (DSCN). Next,
we use TFEConv to replace the depthwise conv in the inverted
bottleneck to form the TFECN. Furthermore, to verify the valid-
ity of the proposed weight transfer method, we use ImageNet-
pretrained weights for transferring weights between kernels of
the same size (DSCN-ImgP) and between kernels of different
sizes (TFECN-ImgP). As shown in Table 1, the performance
of MobileNetV2-like was improved by introducing MLP, but
overfitting was observed in TFECN. The possible reason is the
loss of the locality prior when training large kernels individu-
ally, leading to difficulties in optimizing on small datasets and
causing a loss of generality [11]. Similar to the small kernels
used by RepLKNet [11] to assist in training the large kernel
models, the pretrained weights of the small kernels we intro-
duce in the large kernels also play the role of reintroducing the
locality prior. Therefore, overfitting is mitigated and eventu-
ally makes TFECN-ImgP better than DSCN-ImgP. In summary,
while TFEConv can eventually improve the model, it has a sig-
nificant dependence on pretrained weights.

3.3.2. AudioSet experiments

In Table 2, we compare TFECN with several of the latest mod-
els in audio classification. Among these methods, except for
PANN and ERANN, which are trained from scratch, the rest

Table 2: Performance comparison of TFECN and previous
methods on AudioSet.

Architecture Params Pretraining mAP

PANN [1] ConvNet 81M - .431
PSLA [2] ConvNet 13.6M ImageNet .444

ERANN [3] ConvNet 55M - .450
AST [8] transformer 86M ImageNet .459

HTS-AT [9] transformer 31M ImageNet .471
PaSST [10] transformer 86M ImageNet .471

TFECN ConvNet 27M ImageNet .477

of the models all use ImageNet-pretrained weights. The re-
sults show that TFECN significantly outperforms the previous
ConvNets and outperforms the latest Transformer-based models
with fewer parameters.

3.3.3. FSD50K and ESC50 experiments

As in previous work, we used AudioSet-pretrained TFECN to
fine-tune on FSD50K and ESC50. The results are shown in Ta-
ble 3. TFECN achieves new state-of-the-art results on FSD50K,
outperforming the previous best transformer-based model. On
ESC50, TFECN also outperforms the models trained in the
same way.

Table 3: Performance comparison of TFECN and previous
methods on FSD50K and ESC50.

Pretraining FSD50K mAP ESC50 Acc

PANN [1] Audio - 94.7
PSLA [2] Img+Audio 56.71 -

ERANN [3] - - 96.1
AST [8] Img+Audio - 95.7

HTS-AT [9] Img+Audio - 97.0
PaSST [10] Img+Audio 65.55 -

TFECN Img+Audio 67.29 97.7

4. Conclusions
In this paper, we introduce TFECN, a pure ConvNet for audio
classification, which achieves outstanding performance on sev-
eral datasets, outperforming recent transformer-based models,
demonstrating that a pure ConvNet can still achieve advanced
performance in audio classification. However, TFECN is overly
dependent on pretraining due to the difficulty of training large
kernels. In the future, we will continue to explore efficient ways
to train TFECN so that it can still achieve excellent performance
without pretraining.
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