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Abstract
Voice activity detection (VAD) is an essential front-end in many
speech applications that aims at determining the presence or
absence of speech signals in an audio frame. However, tradi-
tional VAD methods often suffer from poor performance or non-
causality in low signal-to-noise ratio (SNR) environments. In
this work, we therefore present a real-time causal VAD model,
which mainly consists of a frequency-domain feature gener-
ation module, a convolutional-based encoding module and a
residual block based decoding module. The exploitation of only
current and past frames for feature extraction guarantees the
causality. The effectiveness of the proposed model is verified
on two datasets under various noise conditions. It is shown that
the proposed method can achieve a comparable or even better
performance than state-of-the-art non-causal models.
Index Terms: Voice activity detection, residual network, con-
volutional network, causality.

1. Introduction
Voice activity detection (VAD) aims to identify the presence or
absence of speech activities of interest in an audio signal that
might be contaminated by various background noises. It is usu-
ally employed as a front-end preprocessor and largely affects
the performance of back-end applications. For example, in au-
tomatic speech recognition (ASR), it was shown that even if the
background noise is small, half of the word error rates are re-
lated to the front-end VAD mismatch [1]. In speech coding task,
VAD can be exploited effectively for the reduction of the aver-
age bitrate and co-channel interference [2]. The application of
VAD is also required by e.g., speech separation/enhancement,
speaker diarization, etc.

Traditional VAD approaches predominantly rely on energy-
based features, such as time-domain power [3], spectral fea-
ture [4], short-term energy [5] and spectral entropy [6]. How-
ever, in the case of low signal-to-noise ratios (SNRs), it be-
comes challenging to use traditional methods to distinguish hu-
man voice from noises. In order to improve the efficacy in
low SNR conditions, some methods were thus proposed, e.g.,
time-frequency enhancement [7], denoising-based robust VAD
(rVAD) [8]. More recently, with the advance in neural net-
works as well as the application to speech processing, fully
connected deep networks [9,10], convolutional neural networks
(CNNs) [11–13], long short-term memory (LSTM) [14–16] and
hybrid models [17–19] have been studied in this field. Although
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Figure 1: The overall diagram of the proposed VAD model.

compared to conventional method the performance can be im-
proved, they are still largely affected by the noise condition.

To further address this limitation, some more complex mod-
els were proposed. For instance, Zhang and Wang [20] pro-
posed to use multi-resolution cochleagram (MRCG) feature for
training a bottleneck deep neural network (bDNN), which can
achieve a better performance but require a much heavier com-
putational burden. In [21], an attention-based adaptive context
attention model (ACAM) was proposed, which utilizes contex-
tual information during training and outperforms the bDNN.
However, the training of ACAM is unstable. Lee et al. [22]
proposed a spectro-temporal attention-based model (STAM) for
VAD, which was built upon ACAM with the same feature inputs
and can improve the training stability.

As the front-end VAD module is usually combined with
much more complicated subsequent speech tasks, apart from
the noise robustness an expected VAD model needs to further
satisfy two requirements: 1) light-weighted in model size and 2)
low latency. The model size is not only related to the space com-
plexity, but also to the decoding time, which in addition deter-
mines the latency. For instance, in ACAM and STAM methods
the use of contextual information makes the VAD non-causal,
which has to wait for a few time frames to construct the input
features. This non-causal design with a high latency is clearly
not compatible with online speech tasks, e.g., streaming ASR.

In this paper, based on STAM [22] we therefore propose
a real-time causal spectro-temporal VAD approach based on
convolutional encoding and residual decoding. First, we cal-
culate the log-Mel spectrograms of the input signal and con-
struct a series of causal acoustic inputs, where only the current
and past frames are included. The convolutional encoding mod-
ule then processes these features using convolutional layers to
highlight the informative parts. The residual decoding module
utilizes residual connections to capture temporal dependency
across time frames. The effectiveness of the proposed model
is verified on two noisy datasets under various noise condi-
tions, which shows a wider applicability of the proposed causal
method. Compared to the state-of-the-art non-causal STAM
method, our model can perform better in most cases with a
smaller parameter amount. The rest of the paper is organized
as follows. In Section 2, we describe the proposed causal VAD
model in detail. Section 3 presents the experimental setup and
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Figure 2: An illustration of the convolutional encoding module.

evaluation results. Finally, Section 4 concludes this work.

2. Proposed Method
The proposed VAD model mainly comprises three modules:
feature generation, convolutional encoding and residual decod-
ing, which follow the pipeline in Figure 1.

2.1. Feature generation module

In order to generate the necessary features and labels for the
proposed model, the original speech signal is initially seg-
mented using a Hann window of 25 ms with a shift of 10 ms
and then converted using a 1024-point short-time Fourier trans-
form (STFT). The STFT-domain frames are then filtered using a
log-Mel filter bank [23] with a factor of D = 80, resulting in the
input for the model. Similarly to [21], the features and labels
for the model are constructed from a series of frames, that is,
the feature vector at time index T incorporates the information
from both the current and past frames, given by

X = [FT−t0 ,FT−t1 ,FT−t2 , · · · ,FT−tn ]
⊤, (1)

where t = [t0, t1, t2, · · · , tn] denotes the set of relative time
indices of the considered frames, and F represents the frame-
level log-Mel spectrogram features. Similarly, the ground-truth
label vector at the current time step is defined as

L = [LT−t0 , LT−t1 , LT−t2 , · · · , LT−tn ]
⊤, (2)

where (·)⊤ represents the vector/matrix transpose. It is clear
from the considered feature formation that when detecting the
status of the current frame, only the current and existing infor-
mation is used and the future frames are not required, leading
to the causality of the proposed VAD model.

2.2. Convolutional encoding module

In this work, the proposed convolutional layer in convolutional
encoding module is based on the gated CNN-based spectral at-
tention module in [22]. Although the batch normalization layer
in DNNs can accelerate the model convergence and mitigate the
gradient dispersion issue, the layer number of the convolutional
encoding module is shallow, and it is validated via experiments
that excluding the batch normalization layer does not heavily
affect the performance. Therefore, we remove the batch nor-
malization layer to reduce the parameter amount.

In detail, the convolutional encoding module is comprised
of multiple convolution layers and a max-pooling layer, as

Figure 3: An illustration of the residual decoding module.

shown by the dotted box in Figure 2. Given the input acous-
tic feature X , the upper convolution layer is responsible for
extracting relevant feature CX , and the lower convolution layer
generates the corresponding mask weight MX . The acoustic
features X and the mask matrix CX are multiplied and then
fed into the max-pooling layer. The output of the max-pooling
layer E is fed into the fully connected layer to obtain the pre-
dicted output ŶE for loss calculation during training. It is clear
that ŶE can be regarded as a raw VAD prediction. The kernels
in the convolution layers have a size of 3×3. The input and out-
put channels increase from {1, 2} to {8, 16} in order according
to the number of layers. That is, in case the layer index (four in
total) is increased by one, the input and output channels of the
corresponding layer is increased by two. The pooling layer has
a window of 2× 2. The numbers of hidden unit and output unit
in the fully connected layer are 256 and 1, respectively. The
number of layers in convolutional encoding module is empiri-
cally set to be 4 in this work, which is shown to be effective in
performance.

2.3. Residual decoding module

We design a residual decoding module to decode the encoded
feature, which comprises a residual convolution block [24] and
a fully connected layer as shown in Figure 3. In the convo-
lutional encoding module, the prediction label ŶE is the out-
put of only one full-connection layer given the input E. This
means that E already has some semantic information, and it
is expected to retain this information as much as possible in
the decoder. To accomplish this, residual connections are used
throughout the decoding module, which can help to retain infor-
mation from the previous stage and only train the error module
of the feature information with the actual label. With multi-
layer stacking, the convolution blocks allow for a large recep-
tive field with a small number of parameters due to the nature
of the convolution kernel. Note that we configure four residual
convolution blocks in the feature decoding module.

The output of the max-pooling layer E is fed into the first
residual block, whose output will be forwarded to the next resid-
ual block. This operation is repeated in every residual block
until the output D is obtained. Each residual block essentially
has two convolution layers. The output of each residual block is
the sum of the output of the convolution block and the input of
this residual block. Finally, the output of residual blocks D is
fed into the fully connected layer to obtain the predicted output
ŶD . The convolution kernels in the convolution layers have a
size of 3× 3, and the numbers of channels in each convolution
layers are {1, 4, 1}, while the number of output unit in the fully
connected layer is 1. The number of residual blocks is also set
to be 4 similarly to the convolutional encoding module.
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2.4. Loss function

In this work, we use both the output of the convolutional encod-
ing module ŶE and the output of the residual decoding module
ŶD to calculate the binary cross entropy (CE) loss with respect
to the ground truth, which is given by

L = (1− k)CE[L, S(ŶE)] + kCE[L, S(ŶD)], (3)

where CE means the binary CE loss function and S the sigmoid
activation function, and the hyper-parameter k is used to assign
the importances of the convolutional encoding and residual de-
coding modules. Notably, all frames are taken into account in
the loss calculation. In experiments, k is set to be 0.7 unless
stated elsewhere.

3. Experiments
In this section, we will present ablation experiments to show
the efficacy of each module in the proposed model as well as
the comparison to some other existing models. We conducted
experiments on the Intel Xeon E5-2680 CPU and NVIDIA
GeForce GTX 3090 GPU. All experiments are conducted using
the Adam optimizer [25] with the learning rate changing from
10−3 to 10−5, and the decay proportion of the learning rate at
each epoch is 0.8 with respect to the previous step.

3.1. Experimental setup

Dataset: Two datasets, including QUT-NOISE-TIMIT [26] and
LibriSpeech [27], are utilized to validate the VAD performance
in this work. The QUT-NOISE-TIMIT dataset was formed by
combining the TIMIT dataset [28] with the QUT-NOISE back-
ground noise dataset [26]. This mixing operation leads to noisy
speech data with a cumulative duration of 600 hours across ten
scenes at six different SNR levels of (-10, -5, 0, 5, 10, 15) dB.
To maintain the independence of the training and testing sets,
100 hours of data were randomly selected as the training subset
and another 100 hours as the test subset. Note that the train-
ing and test sets have no coincident segments in terms of either
human voice or background noise.

As LibriSpeech was mainly collected for the English ASR
task, we mix the LibriSpeech dev-clean dataset [27] with
NoiseX-92 [29] dataset to create another noisy test dataset,
which contains 15 hours of audio recordings across 15 envi-
ronments and 6 different SNR levels of (-10, -5, 0, 5, 10, 15)
dB. Since our focus is on the VAD in low SNR conditions, the
results of SNR ∈ {-10, -5, 0, 5} dB will be shown.

Performance measure: We use the area under the curve
(AUC) [30] to measure the VAD accuracy, which is frequently
employed in classification problems and denotes the area under
the curve of the receiver operating characteristic (ROC) [31]. In
addition, we use the THOP package to calculate the parameter
quantity and the calculation quantity in flops, which measures
the space and computational complexities, respectively.

3.2. Experimental results

First of all, as the frame combination determines the contextual
feature extraction, we compare the performance of using con-
tinuous and non-continuous frames. Notice that given a fixed
number of frames, the exploitation of continuous frames results
in a shorter time span, which may limit the amount of tempo-
ral information that can be captured; the non-continuous frames

https://github.com/Lyken17/pytorch-OpCounter

Table 1: The AUC of ablation experiments.

SNR (dB) -10 -5 0

-ResDec continuous 83.48 90.70 95.66
non-continuous 88.13 95.48 98.80

ResFC continuous 83.45 90.62 95.54
non-continuous 89.08 96.15 99.00

ResConv continuous 83.45 90.41 95.36
non-continuous 90.31 96.64 99.09

Figure 4: The AUC in terms of k and SNR.

can increase the time span but introduce the temporal disconti-
nuity. For this, we consider t = [t0, t1, t2, ..., tn] = [0, 1, 2, 3,
4, 5, 6] as the continuous frame set and t = [0, 1, 3, 7, 15, 25,
38] as the non-continuous set, which follows the frame span in
[13] (i.e., t0 = 0, tn = 38). From Table 1, we can see that on the
QUT-NOISE-TIMIT dataset, the utilization of non-continuous
frame set outperforms the continuous counterpart. This implies
that the time span plays a more important role than time conti-
nuity in VAD, as a longer time span captures more contextual
information. Hence, we will only consider the non-continuous
combination of time frames in the sequel.

Second, as using the output of the convolutional encoding
module can somehow directly predict the raw labels through
the fully connected layer, it is necessary to compare the effect
of different modules on the performance. To do so, we compare
three cases: the network without residual decoding (-ResDec),
using the residual fully connected layers (ResFC) and using
the proposed residual convolutional layers (ResConv). The
obtained results on the QUT-NOISE-TIMIT dataset are pre-
sented in Table 1, from which it is clear that using the proposed
residual convolutional layers in the residual decoding module
achieves the best performance. This is because the receptive
field of the CNN is already capable of covering all input frames,
and the convolutional kernel is capable of efficiently learning
the information contained in the features.

Further, we investigate the impact of the hyper-parameter
k in the loss function on the VAD performance. In Figure 4,
we show the AUC distribution in terms of k and SNR on the
QUT-NOISE-TIMIT dataset. It is clear that in case k = 0.7, the
best detection performance is achieved regardless of the noise
condition (this becomes more clear in case of SNR = -10 dB). A
larger or smaller k will worsen the AUC. Also, it conveys that
k plays a more important role in lower SNR conditions.

Third, we compare the performance of the proposed
method on the QUT-NOISE-TIMIT and noisy LibriSpeech
datasets with existing state-of-the-art approaches, including
ACAM [21], STAM [22]. Note that ACAM and STAM use
non-causal inputs, which require a look ahead of 19 frames. To
ensure the consistency of data input, we use log-Mel spectro-
gram features of seven frames for all models, where the causal
method (i.e., the proposed method) use the relative frame set t =
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Table 2: The AUC score on the QUT-NOISE-TIMIT dataset.

SNR (dB) -10 -5 0 5

ACAM [21] 86.22 94.32 98.32 99.20
STAM [22] 88.40 95.78 98.84 99.53
Ours 90.31 96.64 99.09 99.64

Table 3: The AUC score on the noisy LibriSpeech dataset.

SNR (dB) -10 -5 0 5

ACAM [21] 92.82 96.30 97.74 97.63
STAM [22] 93.56 96.03 97.27 97.76
Ours 94.48 96.82 97.80 98.16

Table 4: The model complexity of comparison VAD methods.

Model FLOPs parameters Causality

ACAM [21] 32.2M 328K No
STAM [22] 41.9M 559K No
Ours 39.8M 360K Yes

[0, 1, 3, 7, 15, 25, 38] and the non-causal methods (STAM and
ACAM) use t = [-19, -10, 1, 0, 1, 10, 19] (this keeps the same
as in [21, 22]) with respect to the current frame. Tables 2&3
present the comparisons on the two datasets, respectively. It is
clear on both datasets that the proposed method achieves the
best performance regardless of noise levels, which is slightly
better than that of existing best non-causal STAM model. This
is mainly due to the fact that the proposed convolutional en-
coding module enables a raw VAD prediction and the residual
decoding provides a further label refinement. From Table 4, we
observe that compared to the best published non-causal STAM
model, apart from the superiority in performance the proposed
method even introduces less FLOPs and parameters, showing a
wider applicability.

Finally, a more complete comparison with the state-of-the-
art STAM model [22] on the QUT-NOISE-TIMIT dataset is
shown in Table 5, where several types of additive noises and
noise levels in SNR are taken into account. It can be seen
that the proposed method works much better than the non-
causal STAM in CAFE-FOODCOURTB, REVERB-CARPARK,
REVERB-POOL, where note that the latter two denote reverber-
ant environments, and in the rest conditions the two methods
perform comparably. Notice that in the two reverberant envi-
ronments, the AUC of the proposed model is 2.8% higher than
that of STAM on average, showing a stronger robustness against
reverberations. Note that the real-time factor of the proposed
method on the QUT-NOISE-TIMIT dataset is approximately
0.03, which is acceptable for real-time applications. Overall,
compared to STAM, the proposed method can not only resolve
the issue of non-causality, but also improve the VAD accuracy
by 0.74% on average.

4. Conclusion
In this paper, we proposed a real-time causal spectro-temporal
VAD model based on convolutional encoding and residual
decoding. The input acoustic features were constructed us-
ing log-mel spectrograms of the current and previous time

Table 5: The comparison of AUC with the best existing STAM
method on the QUT-NOISE-TMIMT dataset with different noise
levels and types.

Noise type SNR STAM [22] Ours

-10 78.38 79.07
CAFE-CAFE -5 91.85 92.05

0 97.83 97.67

-10 73.76 76.56
CAFE-FOODCOURTB -5 87.29 90.56

0 96.42 97.23

-10 97.37 97.21
CAR-WINDOWNB -5 99.21 98.91

0 99.77 99.45

-10 99.16 98.85
CAR-WINUPB -5 99.73 99.38

0 99.87 99.59

-10 97.59 97.41
HOME-KITCHEN -5 99.10 98.75

0 99.64 99.28

-10 92.06 92.59
HOME-LIVINGB -5 96.96 97.12

0 99.10 98.94

-10 89.46 91.04
REVERB-CARPARK -5 95.53 96.22

0 98.64 98.71

-10 74.28 82.34
REVERB-POOL -5 88.12 91.97

0 95.80 96.78

-10 96.76 97.16
STREET-CITY -5 99.09 98.77

0 99.57 99.40

-10 94.31 95.95
STREET-KG -5 98.22 98.26

0 99.57 99.26

Average -5 94.48 95.22

frames, forming a causality property. Experiments on two noisy
datasets validated the efficacy of the proposed method. Com-
pared to existing causal methods, our method can achieve a
much higher AUC; compared to the more advanced non-causal
approaches our method obtains a comparable or even better per-
formance with a lower complexity, particularly in low SNR and
reverberant conditions. Therefore, the proposed method is more
appropriate for real-time applications, e.g., streaming ASR.
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