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Abstract
The utilization of Conformer-based architecture has been shown
to be effective in improving the performance of spoken lan-
guage identification (LID) in recent years due to Conformer’s
superior representational capacity. However, when perform-
ing language identification on short speech segments, a signifi-
cant drop in performance is often observed. In this paper, we
adopt a method to alleviate this issue by introducing a self-
knowledge distillation technique to Conformer-based LID ar-
chitecture whose encoder was pretrained by an ASR task. We
distill the predictive distribution between the original input and
the input processed by a double-ended random masking module
during the training stage for each sample. Experimental results
demonstrate the effectiveness of the method on two datasets:
OLR21 with 16,000 Hz sampling rate and LRE22 with 8,000
Hz sampling rate. Moreover, the method also enhances the per-
formance of language identification on short-duration speech
segments.
Index Terms: language identification, short utterances, self-
knowledge distillation

1. Introduction
Spoken language identification (LID) is the task of determin-
ing the language of an utterance. And it is an essential task in
speech processing, especially in multi-lingual applications. Re-
liable and robust LID is critical for achieving high performance
and accuracy in these systems [1, 2].

The LID system is typically composed of two primary com-
ponents: an language embedding extractor and a back-end scor-
ing method. The embedding extractor maps variable-duration
speech utterances to fixed-dimensional language representa-
tions that capture high-dimensional language features. Sub-
sequently, the back-end scoring method measures the similar-
ity of the language representations to identify the language of
the utterance. Over the years, various neural network architec-
tures have been employed as embedding extractors in LID sys-
tems, including E-TDNN [3] , ResNet [4], and ECAPA-TDNN
[5]. These architectures have demonstrated success in extract-
ing meaningful features from speech data and providing high-
quality language representations.

Recent studies have proposed that there have been signif-
icant advances in neural network architectures for LID tasks
[6, 7, 8, 9, 10]. Conformer-based [11, 12] models gain pop-
ularity due to their ability to model both local and global de-
pendencies in an audio sequence in a parameter-efficient way
[13, 14, 15]. Moreover, using a pretrained automatic speech
recognition model to provide informative speech representa-
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tions has proven to be effective for the downstream LID task.
It’s worth noting that reference [16] utilizes a transfer learn-
ing approach, where a U2++ [5] encoder-decoder model is pre-
trained and then the encoder is further fine-tuned for the LID
task. By transferring knowledge from related speech tasks or
high-resource languages, transfer learning can boost the per-
formance of LID systems. Furthermore, many studies have
explored the use of different loss functions and regularization
techniques to train embedding extractors that can generalize
well to unseen data [17].

In recent years, many methods have been proposed to learn
more efficient representation. Knowledge distillation from pre-
trained deep networks suggests that we can use more informa-
tion from the soft target probability to train other neural net-
works or train them based on the soft target probabilities of
the training model itself [18]. Self-knowledge distillation has
been shown to be effective in both Natural Language Process-
ing (NLP) and Computer Vision (CV) areas [18, 19, 20, 21, 22].
Self-distilled self-supervised speaker representation learning
has pushed the performance of the speaker representation to a
new limit[23]. R-Drop [21] forces the output distributions of
different submodels generated by dropout to be consistent with
each other and is universally effective in several tasks, including
neural machine translation, language understanding, language
modeling, and image classification. A dual-mode framework
with knowledge distillation was proposed to enhance the LID
performance on various-duration speech [24].

Inspired by these works, we trained a multilingual ASR
model and employ the trained Conformer encoder to the LID
model and adopt a segment mask self-knowledge distillation
(SM-KD). For each sample, we distill the predictive distribu-
tion between the origin audio segment and truncated audio dur-
ing training. Consequently, it not only improves the model’s
generalization ability but also facilitates the learning of feature
extraction for short-duration speech. We evaluated the method
on the OLR21 [25] dataset with 16,000 Hz sampling rate and
the LRE22 [26] dataset with 8,000 Hz sampling rate. The ex-
perimental results showed that this method could improve LID
performance, especially in short audios.

This paper is organized as follows: Section 2 outlines the
ASR pretrain and SM-KD method to the LID task. In Section
3, we provide a comprehensive description of the experimental
setup utilized for training and evaluation in this study. Section
4 presents an analysis of the experimental results, while Section
5 summarizes the method and its efficacy.

2. Methods
The LID system employed in this paper consists of two primary
components: a front-end feature extraction module and a back-
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end classifier. This front-end and back-end framework has been
widely used in both LID and speaker recognition tasks. In this
section, we describe the Conformer-based LID front-end model.
Additionally, we introduce a segment mask self-knowledge dis-
tillation method, which leverages a form of knowledge distil-
lation to enhance the performance of the front-end model. Fi-
nally, we present the back-end classifier used in our system for
language recognition.

2.1. Conformer-based LID model

The backbone of the LID Conformer system is shown in Fig-
ure 1. With the Conformer encoder consisting of subsampling
layers, a stack of Conformer blocks models the frame-level lan-
guage representation. An attentive statistics pooling (ASP) [27]
processes all the information across the time dimension and
maps frame-level representations into segment-level features,
which are then projected by a linear layer with batch normal-
ization and nonlinear activation to the utterance level embed-
ding. This structure is trained to classify these languages on the
training data with a cross-entropy (CE) loss. The Conformer
block is composed of two feed-forward modules (FNN), sim-
ilar in structure to the Macaron block, with residual connec-
tions. Multi-head self-attention (MHSA) and Convolution mod-
ules are sandwiched between the two FNN modules. MHSA
captures the global information of the input sequence, while
Convolution provides the network with an inductive bias. This
combination of modules allows the Conformer block to learn
both local and global representations of the input, making it a
powerful building block for various tasks in speech processing,
including language identification.

Attentive statistics pooling is a technique used in deep
learning for extracting features from sequential data, such as
speech or text. It involves computing a weighted average of the
input sequence, where the weights are learned through an atten-

Figure 1: Schematic diagram of Conformer-based LID back-
bone.

Figure 2: Illustration of segment mask self-knowledge distilla-
tion architecture. The input will go through the model twice and
obtain two distributions P and Q. In the second pass, the input
is masked to a shorter audio segment.

tion mechanism. The attention mechanism allows the model to
selectively focus on different parts of the input sequence, giving
more weight to the most relevant parts for the task at hand. An-
other advantage of using the Conformer architecture is that the
main component of the model lies in its widespread application
across various audio tasks [11, 14, 28, 29], enabling convenient
knowledge transfer for enhancing model capacity.

2.2. Segment mask self-knowledge distillation

The Conformer-based LID model exhibits a superior represen-
tational capacity that facilitates easy memorization of the train-
ing set. However, this attribute also causes overfitting problems
when the training data is inadequate. In the training stage, de-
termining the chunk size of input samples is crucial. When the
chunk size is set too large, the model’s ability to extract fea-
tures from short speech segments is significantly diminished.
Conversely, if the chunk size is set too small, the amount of
information provided by each sample will be insufficient, thus
posing difficulty in training and convergence of the model.

To mitigate this problem, we employ a simple approach that
leverages self-knowledge distillation for LID tasks. We intro-
duce the segment mask self-knowledge distillation method to
Conformer-based model to enhance the performance of the LID
system.

As shown in Figure 2, during the forward propagation stage,
the input undergoes two passes through the model. The first
pass produces a probability distribution denoted as P after pro-
cessing the input x. Subsequently, a random length mask is
applied to both ends of the same sample x, and the remaining
segments x′ can be considered as contiguous audio segments
extracted from the original sample. Another distribution Q can
be obtained after feeding the segmented samples into the net-
work. To encourage the learned features to be as similar as
possible, the Kullback-Leibler divergence DKL is computed to
measure the similarity between these two vectors:

DKL (P ||Q) =
∑

P (i) log (P (i)/Q(i)) (1)

LKL = DKL (P ||Q) +DKL (Q||P ) (2)

After obtaining the probability distributions P and Q, we
compute the cross-entropy loss for each distribution, respec-
tively, and calculate a weighted sum of the two CE losses as
LCE :

LCE = Lce (P, T ) + Lce (Q,T ) (3)
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Algorithm 1 segment mask self-knowledge distillation

Initialize parameters θ.
while θ has not converged do

Sample a batch (x, y) from the training dataset.
Mask x from the left and right ends with random length

to get (x′, y)
Feed x and x′ into the language embedding model to

obtain the distributions P and Q.
Update parameters θ by computing the gradients of the

loss function in Equation (4).
end while

where T denotes the ground truth. Incorporating the segment
mask self-knowledge distillation strategy, the modified loss
function LSM-KD is defined as follows:

LSM-KD = LCE + αLKL (4)

The second input can be viewed as a truncated version of
the original input and is a short-duration audio. In this structure,
the first input can be considered as the teacher model to assist
in the training of the truncated audio, resulting in an embed-
ding extractor that is robust to short-duration speech. The full
training procedure with the loss is summarized in Algorithm 1.

2.3. Scoring methods

The embeddings are computed from original training data and
augmented audio samples. No linear discriminative analysis
(LDA) method is performed. The embedding features are aver-
aged into one enrollment embedding vector for each language.
Then the logistic regression (LR) was used to compute the score
of a trial on a particular language.

3. Experiments setups
3.1. Datasets

The OLR21 [25] database covers 17 languages. The training
set is up to 280 hours. The sampling rate of both the training
set and the test set audio is 16,000 Hz. 13 target languages
(i.e., Indonesian, Japanese, Russian, Korean, Vietnamese, Man-
darin, Cantonese, Sichuanese, Shanghainese, Hokkien, Tibetan,
Kazakh and Uyghur) are considered in our experiment.

As illustrated in Figure 3, the test set comprises a total
of 32,863 speech samples of varying lengths ranging from 1s
to 33s. According to statistics, there are 3,154 samples less
than 3s, 19,882 samples between 3s and 6s, and 9,827 sam-
ples longer than 6s. In order to evaluate the performance of the
model on different length segments, we divided the test set into
three subsets based on their duration: short, normal, and long.

In LRE 2022, the following datasets are provided by the
organizer as described in [26] : 2017 NIST LRE Development
Set and previous NIST LRE training data (LDC2022E16), 2017
NIST LRE Test Set (LDC2022E17), and 2022 NIST LRE De-
velopment Set (LDC2022E14), including 14 target languages
and 14 non-target languages. Audios are 8-bit a-law SPHERE
files sampled at 8,000 Hz. The VoxLingua107 data set [30] was
also permitted for use. Only the above-specified data sets were
used during training.

To enhance the robustness, the following data augmentation
approaches have been adapted to improve model performance:
speed perturbation, with the speed factors of 0.9, 1.0,1.1; addi-

Figure 3: Duration distribution of the OLR21 test set and parti-
tion

tive noise from the MUSAN [31] dataset is mixed with the orig-
inal signal, only publicly available non-speech audio and data
are used; reverberation injection, using simulated room impulse
responses from RIRs [32].

3.2. Experimental settings

The ASV-Subtools platform [29, 33] was employed for training
each language identification model. Feature engineering and
backend processing were performed using the Kaldi platform
[34], while the backbone model was trained using the PyTorch-
based ASV-Subtools.

For feature engineering, 80-dimensional FBank with a
frame length of 25ms and a hop size of 10ms was used. In ad-
dition, we applied cepstral mean normalization (CMN) within
a 3-second sliding window. It’s worth noting that no voice ac-
tivity detection (VAD) was employed in the feature extraction
process.

For the Conformer configures, the 12-block conformer en-
coder output dimension is 256, the feed-forward dimension is
set to 1024, and the number of attention heads is 4. LID models
are trained with ralamb optimizer. The hyperparameters used
for training the model included an initial learning rate of 0.0005
and weight decay set at 1e-1. Lookahead technique was not em-
ployed during the training process. During the SM-KD training
process, we set α in Equation (4) to 0.35.

3.3. Model evaluation

During the testing phase, embeddings are computed for each
segment of audio through the forward pass of the front-end neu-
ral network. For back-end, we choose LR to compute the score
of extracted embeddings. Evaluation performance is measured
by Equal Error Rate (EER) and Cavg in the OLR 2021 datasets
[25]. And for LRE22 datasets, actCprimary and minCprimary
are uesd as performance measurement metric [26].

For comparison, we trained the baseline E-TDNN x-vector
model and Conformer-based LID model. Their performances
are reported in Table 1. As indicated here, the Conformer-
based model is competitive in language recognition tasks.
The conformer block is adept at capturing global information
through attention mechanisms while also benefiting from the
convolution-based modeling of local invariance.

4. Results and analysis
As is shown in Table 1, with the self-knowledge distillation
technique, the performance of Conformer model is further im-
proved. We partitioned the original test set into three subsets
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Table 1: Performance of Baseline, Conformer with and without ASR pretraining, and the SM-KD method on OLR2021 dataset

Model test short normal long
Cavg EER% Cavg EER% Cavg EER% Cavg EER%

Baseline 0.0817 8.977 - - - - - -
Conformer 0.0229 2.173 0.0289 3.9 0.0219 2.055 0.014 1.74
+ SM-KD 0.014 1.43 0.0208 2.949 0.0143 1.257 0.0108 1.257
+ ASR pretrain 0.0122 1.263 0.0201 2.917 0.0123 0.0123 0.009 1.079
+ ASR pretrain + SM-KD 0.0112 1.187 0.018 2.695 0.0117 1.056 0.0074 0.9667

Figure 4: DET curves of each system on short test set

based on the length of the audio recordings. Then, we evalu-
ated the performance of each model on these three subsets sep-
arately. Figure 4 illustrates the Detection Error Tradeoff (DET)
curves of each system on the short test set. Similar to calculat-
ing EER, for each sample x and each language y, we obtain a
score scorex,y . By setting a threshold θ, if the scorex,y>θ and
the ground truth LID(x) ̸= y, then the False Acceptance (FA)
count increases. Conversely, if the scorex,y<θ and LID(x) =
y, then the False Rejection (FR) count increases. We adjust the
threshold θ to calculate the FAR and FRR at each threshold and
plot them to obtain the DET curve. The experimental results re-
veal that our method can effectively enhance the performance of

Table 2: The final rankings for the OLR21 constrained LID task,
Only the specified data can be used in the training process

Ranking Team Name Cavg EER%

1 X-Voice 0.0025 0.2708
2 TalTech 0.0079 0.8642
3 funspeech 0.0083 0.9311

Our single system 0.0112 1.187
4 Anonymous 0.0114 1.184

Table 3: Experimental performance of Baseline, Conformer and
Conformer with SM-KD on LRE22 dataset

Model actCprimary minCprimary EER%

ECAPA-TDNN 0.40335 0.40679 15.48
Conformer 0.27252 0.29645 9.106
+ SM-KD 0.25104 0.27553 8.407

the LID model, particularly in short speech scenarios. The Con-
former model utilizing the segment mask self-knowledge distil-
lation outperformed the baseline Conformer model not only on
the short-duration test subset but also on the long-duration test
subset, demonstrating that the inclusion of the self-knowledge
distillation strategy can extract more robust language embed-
dings. The speech sample in the OLR21 dataset contains not
only the language id but also the corresponding transcript. So
we trained a multilingual ASR model using the data among all
target languages as the ASR-pretrained model. The experimen-
tal results also indicate that the ASR-pretrained encoder with
fine-tuning has a significant performance improvement, which
suggests that the encoder trained with ASR tasks has the ability
to extract linguistic features and can be beneficial to LID tasks.
This structure can also be applied to the fine-tuning process af-
ter ASR transfer learning, resulting in better performance of the
final model.

Table 2 shows the top four systems and their performance
in the OLR21 competition. In the Constrained LID track, Only
the specified data can be used in the training process. Our single
system achieved the performance of the top four systems after
model fusion in the competition.

Table 3 presents the performance of ECAPA-TDNN, Con-
former, and Conformer with SM-KD on LRE22 datasets. It is
worth mentioning that we use a two-stage training strategy, us-
ing all data for pre-training, and fine-tuning in the second stage
using the target language. We found that Conformer-based lan-
guage embedding with SM-KD can also achieve better perfor-
mance on the 8000 Hz sampling rate data set.

5. Conclusions
This paper introduces a segment mask self-knowledge distilla-
tion approach for the LID task based on pretrained Conformer
structure. We distill the predictive distribution between the orig-
inal input and the input processed by a double-ended random
masking module during the training stage. We further demon-
strated that the forward propagation of the original audio during
training is regarded as a teacher that helps the model learn from
short speech segments. Moreover, this approach improves the
model’s feature extraction ability and leads to more generalized
embeddings. The effectiveness of the method was evaluated on
OLR21 and LRE22 datasets. The experimental results demon-
strated that this method improved the performance of LID, par-
ticularly in short-duration audio scenarios.
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[1] K. Kukk and T. Alumäe, “Improving language identification of

accented speech,” arXiv preprint arXiv:2203.16972, 2022.

[2] P. Shen, X. Lu, and H. Kawai, “Transducer-based language
embedding for spoken language identification,” arXiv preprint
arXiv:2204.03888, 2022.

[3] Y. Liu, T. Liang, C. Xu, X. Zhang, X. Chen, W.-Q. Zhang, L. He,
R. Li, Y. Wu, P. Ouyang et al., “Thuee system description for nist
2019 sre cts challenge,” arXiv preprint arXiv:1912.11585, 2019.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[5] B. Desplanques, J. Thienpondt, and K. Demuynck, “Ecapa-
tdnn: Emphasized channel attention, propagation and ag-
gregation in tdnn based speaker verification,” arXiv preprint
arXiv:2005.07143, 2020.

[6] F. Richardson, D. Reynolds, and N. Dehak, “Deep neural network
approaches to speaker and language recognition,” IEEE signal
processing letters, vol. 22, no. 10, pp. 1671–1675, 2015.

[7] I. Lopez-Moreno, J. Gonzalez-Dominguez, D. Martinez, O. Pl-
chot, J. Gonzalez-Rodriguez, and P. J. Moreno, “On the use of
deep feedforward neural networks for automatic language identifi-
cation,” Computer Speech & Language, vol. 40, pp. 46–59, 2016.

[8] P. Shen, X. Lu, L. Liu, and H. Kawai, “Local fisher discriminant
analysis for spoken language identification,” in 2016 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016, pp. 5825–5829.

[9] P. Shen, X. Lu, S. Li, and H. Kawai, “Feature representation of
short utterances based on knowledge distillation for spoken lan-
guage identification.” in Interspeech, 2018, pp. 1813–1817.

[10] A. Lozano-Diez, R. Zazo Candil, J. González Domı́nguez, D. T.
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