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Abstract
Time delay neural network (TDNN) has been proven to be
efficient for speaker verification. One of its successful vari-
ants, ECAPA-TDNN, achieved state-of-the-art performance at
the cost of much higher computational complexity and slower
inference speed. This makes it inadequate for scenarios with
demanding inference rate and limited computational resources.
We are thus interested in finding an architecture that can achieve
the performance of ECAPA-TDNN and the efficiency of vanilla
TDNN. In this paper, we propose an efficient network based on
context-aware masking, namely CAM++, which uses densely
connected time delay neural network (D-TDNN) as backbone
and adopts a novel multi-granularity pooling to capture con-
textual information at different levels. Extensive experiments
on two public benchmarks, VoxCeleb and CN-Celeb, demon-
strate that the proposed architecture outperforms other main-
stream speaker verification systems with lower computational
cost and faster inference speed.
Index Terms: speaker verification, densely connected time
delay neural network, context-aware masking, computational
complexity

1. Introduction
Speaker verification (SV) is the task of automatically verifying
whether an utterance is pronounced by a hypothesized speaker
based on the voice characteristic [1]. Typically, a speaker ver-
ification system consists of two main components - an embed-
ding extractor which transforms an utterance of random length
into a fixed-dimensional speaker embedding, and a back-end
model that calculates the similarity score between the embed-
dings [2, 3].

Over past few years, speaker verification systems based on
deep learning methods [2, 4, 5, 6, 7] have achieved remark-
able improvements. One of the most popular systems is x-
vector, which adopts time delay neural network (TDNN) as
backbone. TDNN takes one-dimensional convolution along the
time axis to capture local temporal context information. Fol-
lowing the successful application of x-vector, several modifi-
cations are proposed to enhance robustness of the networks.
ECAPA-TDNN [4] unifies one-dimensional Res2Block with
squeeze-excitation [8] and expands the temporal context of each
layer, achieving significant improvement. At the same time, the
topology of x-vector is improved by incorporating elements of
ResNet [9] which uses a two-dimensional convolutional neural
network (CNN) with convolutions in both time and frequency
axes. Equiped with residual connection, ResNet-based sys-
tems [10, 11] have achieved outstanding results. However, these
networks tend to require a large number of parameters and com-
putations to achieve optimal performance. In real-world appli-

cations, accuracy and efficiency are equally important. It is of
sufficient interest and challenge to find a speaker embedding ex-
tracting network that simultaneously improves the performance,
computation complexity, and inference speed.

Recently, [5] proposes a TDNN-based architecture, called
densely connected time delay neural network (D-TDNN), by
adopting bottleneck layers and dense connectivity. It obtains
better accuracy with fewer parameters compared to vanilla
TDNN. Later, in [6], a context-aware masking (CAM) mod-
ule is proposed to make the D-TDNN focus on the speaker of
interest and “blur” unrelated noise, while requiring only a little
computation cost. Despite of significant improvements on ac-
curacy, there still exists a large performance gap compared to
other state-of-the-art speaker models [4].

In this paper, we propose CAM++, an efficient and accu-
rate network for speaker embedding learning that utilizes D-
TDNN as a backbone, as shown in Figure 1. We have adopted
multiple methodologies to enhance the CAM module and D-
TDNN architecture. Firstly, we design a lighter CAM module
and insert it into each D-TDNN layer to place more focus on the
speaker characteristics of interest. Multi-granularity pooling is
an essential component of the CAM module, built to capture
contextual information at both global and segment levels. The
previous study in [12] showed that multi-granularity pooling
achieves comparable performance with much higher efficiency,
when compared to a transformer structure. Secondly, we adopt
a narrower network with fewer filters in each D-TDNN layer,
significantly increasing the network depth compared to vanilla
D-TDNN [5]. This is motivated by [11], which observed that
deeper layers can bring more improvements than wider chan-
nels for speaker verification. Finally, we incorporate a two-
dimensional convolution module as a front-end to enhance the
D-TDNN network’s ability to be invariant to frequency shifts in
the input features. A hybrid architecture of TDNN and CNN
has been shown to yield further improvements [13, 14]. We
evaluate the proposed architecture on two public benchmarks,
VoxCeleb [15] and CN-Celeb [16, 17]. The results show that
our method obtains 0.73% and 6.78% EER in VoxCeleb-O and
CN-Celeb test sets. Furthermore, our architecture has lower
computation complexity and faster inference speed than pop-
ular ECAPA-TDNN and ResNet34 systems.

2. System description
2.1. Overview

The overall framework of the proposed CAM++ architecture is
illustrated in Figure 1. The architecture mainly consists of two
components: the front-end convolution module (FCM) and the
D-TDNN backbone. The FCM consists of multiple blocks of
two-dimensional convolution with residual connections, which
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Figure 1: Overview of the proposed CAM++ architecture. It
comprises convolution modules as the front-end and D-TDNN
as the backbone. An improved context-aware making is built
into each D-TDNN layer, which includes multi-granularity
pooling to capture speaker characteristics.

encode acoustic features in the time-frequency domain to ex-
ploit high-resolution time-frequency details. The resulting fea-
ture map is subsequently flattened along the channel and fre-
quency dimensions and used as input for the D-TDNN. The
D-TDNN backbone comprises three blocks, each containing
a sequence of D-TDNN layers. In each D-TDNN layer, we
build an improved CAM module that assigns different atten-
tion weights to the output feature of the inner TDNN layer. The
multi-granularity pooling incorporates global average pooling
and segment average pooling to effectively aggregate contextual
information across different levels. With dense connections, the
masked output is concatenated with all preceding layers and
serves as the input for the next layer.

2.2. D-TDNN backbone

TDNN uses a dilated one-dimensional convolution structure
along the time axis as its backbone, which was first adopted by
x-vector [2]. Due to its success, TDNN has been widely used in
speaker verification tasks. An improved version, D-TDNN, was
recently proposed in [5] as an efficient TDNN-based speaker
embedding model. Similar to DenseNet [18], it adopts dense
connectivity, which involves direct connections among all lay-
ers in a feed-forward manner. D-TDNN is parameter-efficient
and achieves better results while requiring fewer parameters
than vanilla TDNN. Hence, we adopt D-TDNN as the backbone

of our network.
Specifically, the basic unit of D-TDNN consists of a feed-

forward neural network (FNN) and a TDNN layer. A direct
connection is applied between the input of two consecutive D-
TDNN layers. The formulation of the l-th D-TDNN layer is:

Sl = Hl([S
0,S1, · · · ,Sl−1]) (1)

where S0 is the input of the D-TDNN block, Sl is the output of
the the l-th D-TDNN layer, Hl denotes the non-linear transfor-
mation of the l-th D-TDNN layer.

Although D-TDNN has demonstrated remarkable improve-
ment in comparison to vanilla TDNN, there remains a consid-
erable gap between it and state-of-the-art speaker embedding
models like ECAPA-TDNN and ResNet34. We redesign the
D-TDNN to further push its limits and achieve better results.
In [11], it is revealed that depth of the network plays a critical
role in the performance of speaker verification, and increasing
the depth of the speaker embedding model tends to yield more
improvement than widening it. Hence, we significantly increase
the depth of the D-TDNN network while reducing the channel
size of filters in each layer to control the network’s complexity.
Specifically, the vanilla D-TDNN has two blocks, each contain-
ing 6 and 12 D-TDNN layers, respectively. We add an addi-
tional block at the end and expand the number of layers per
block to 12, 24 and 16. To reduce the network’s complexity,
we adopt narrower D-TDNN layers in each block, that is, re-
ducing the original growth rate k from 64 to 32. Additionally,
we adopted an input TDNN layer with 1/2 subsampling rate
before the D-TDNN backbone to accelerate computation. In
Section 3.3, the experimental results will indicate that these ef-
fective modifications significantly improve the performance of
speaker verification.

2.3. Context-aware masking

Attention mechanism has been widely adopted in speaker ver-
ification. Squeeze-excitation (SE) [8] squeezes global spatial
information into a channel descriptor to model channel inter-
dependencies and recalibrate filter responses. Meanwhile, soft
self-attention is utilized to calculate the weighted statistics for
the improvement of temporal pooling techniques [19, 20, 21].

An attention-based context-aware masking (CAM) module
was recently proposed in [6] to focus on the speaker of inter-
est and blur unrelated noise, resulting a significant improve-
ment in the performance of D-TDNN. CAM performs feature
map masking using an auxiliary utterance-level embedding ob-
tained from global statistic pooling. However, in [6], CAM is
only applied at the transition layer after each D-TDNN block,
and a limited number of CAM modules may be insufficient for
extracting critical information effectively. To address this, we
propose a lighter CAM and insert it into each D-TDNN layer to
capture more speaker characteristic of interest.

As shown in Figure 1, we denote the output hidden feature
from the head FNN in the D-TDNN block as X . Firstly, X is
input into the TDNN layer to extract local temporal feature F :

F = F(X) (2)

where F(·) denotes the transformation of the TDNN layer. F(·)
only focuses on local receptive field and F may be subopti-
mal. Therefore, a ratio mask M is predicted based on an ex-
tracted contextual embedding e, and is expected to contain both
speaker of interest and noise characteristic.

M∗t = σ(W2δ(W1e+ b1) + b2) (3)
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where σ(·) denotes the Sigmoid function, δ(·) denotes the
ReLU function, and M∗t denotes the t-th frame of M .

In [6], a global statistic pooling is used to generate the con-
textual embedding e. It is known that speech signals have typi-
cal hierarchical structure and exhibit dynamic changes in char-
acteristic between different subsegments. A unique speaking
manner of the target speaker may exist within a certain seg-
ment. Simply using a single embedding from global pooling
may result in loss of precise local contextual information, lead-
ing to a suboptimal masking. Therefore, it is beneficial to ex-
tend the single global pooling to multi-granularity pooling. This
enables the network to capture more contextual information at
different levels, generating a more accurate mask. Specifically,
a global average pooling is used to extract contextual informa-
tion at global level:

eg =
1

T

T∑

t=1

X∗t (4)

Simultaneously, a segment average pooling is used to extract
contextual information at segment level:

ek
s =

1

sk+1 − sk

sk+1−1∑

t=sk

X∗t (5)

Where sk is the starting frames of k-th segment of feature X .
In the experiments, we segment the frame-level feature X into
consecutive fixed-length 100-frame segments and apply seg-
ment average pooling to each.

Subsequently, contextual embeddings of different level , eg

and es, are aggregated to predict the context-aware mask M .
The Equation 3 can be rewrote to:

Mk
∗t =σ(W2δ(W1(eg + ek

s ) + b1) + b2),

sk ⩽ t < sk+1 (6)

Finally, predicted M is used to calibrate the representation and
produce the refined representation F̃ .

F̃ = F(X)⊙M (7)

Where ⊙ denotes the element-wise multiplication. Equation 6
has a simpler form and fewer trainable parameters compared
to [6]. We insert this efficient context-aware masking into each
D-TDNN layer to enhance the representational power of basic
layers throughout the network.

2.4. Front-end convolution module

TDNN-based networks perform one-dimension convolution
along the time axis, using kernels that cover the complete fre-
quency range of the input features. It is more difficult to
capture speaker characteristics occurring at certain local fre-
quency regions compared to two-dimensional convolutional
network [13]. Generally, plenty of filters are required to model
the complex details in the full frequency region. For exam-
ples, ECAPA-TDNN has a maximum of 1024 channels in the
convolutional layers to achieve optimal performance. In Sec-
tion 2.2, we use narrower layers in each D-TDNN block to con-
trol the size of parameters. This may result in a reduced ability
to find the specific frequency pattern in some local regions. It is
necessary to enhance the robustness of D-TDNN to small and
reasonable shifts in the time-frequency domain and compen-
sate for realistic intra-speaker pronunciation variability. Mo-
tivated by [13, 14], we equip the D-TDNN network with a two-
dimensional front-end convolution module (FCM). Inspired by

the success of ResNet-based architectures in speaker verifica-
tion, we decide to incorporate 4 residual blocks in the FCM
stem, as illustrated in Figure 1. The number of channels is set to
32 for all residual blocks. We use a stride of 2 in the frequency
dimension in the last three blocks, resulting in an 8x downsam-
pling in the frequency domain. The output feature map of FCM
is subsequently flattened along the channel and frequency di-
mension and used as input for the D-TDNN backbone.

3. Experiments
3.1. Dataset

We conduct experiments on two public speaker verification
benchmarks, VoxCeleb [15] and CN-Celeb [16, 17], to evalu-
ate the effectiveness of the proposed methods. For VoxCeleb,
we use the development set of VoxCeleb2 for training, which
contains 5,994 speakers. The evaluation set is constructed from
three cleaned version test trials, VoxCeleb1-O, VoxCeleb1-E
and VoxCeleb1-H. The last two tasks have more trial pairs. For
CN-Celeb, the development sets of CN-Celeb1 and CN-Celeb2
are used for training, which contain 2785 speakers. In the data
preprocessing of the training data, we concatenate short utter-
ances to ensure that they are no less than 6s. There exists mul-
tiple utterances for each enrollment speaker in CN-Celeb test
set. We choose to average all the embeddings which belong to
the same enrollment speaker to get final speaker embedding for
evaluation.

3.2. Experimental setup

For all experiments, we use 80-dimensional Fbank features ex-
tracted over a 25 ms long window for every 10 ms as input. We
apply speed perturbation augmentation by randomly sampling
a ratio from {0.9, 1.0, 1.1}. The processed audio is consid-
ered to be from a new speaker [22]. In addition, two popular
data augmentations are adopted during training, simulating re-
verberation using the RIR dataset [23], adding noise using the
MUSAN dataset [24].

Angular additive margin softmax (AAM-Softmax) loss [25]
is used for all experiments. The margin and scaling factors of
AAM-Softmax loss are set to 0.2 and 32 respectively. During
training, we adopt stochastic gradient descent (SGD) optimizer
with a cosine annealing scheduler and a linear warm-up sched-
uler, where the learning rate is varied between 0.1 and 1e-4.
The momentum is 0.9, and the weight decay is 1e-4. 3s-long
samples are randomly cropped from each audio to construct the
training minibatches.

We use cosine similarity scoring for evaluation, without ap-
plying score normalization in the back-end. We adopt two com-
monly used metrics in speaker verification tasks, equal error
rate (EER) and the minimum detection cost function (MinDCF)
with 0.01 target probability.

3.3. Results on VoxCeleb and CN-Celeb

The performance overview of all methods is presented in Ta-
ble 1. For fair comparison, we re-implement several baseline
models under the same experimental setup described in Sec-
tion 3.2, including TDNN [2], D-TDNN [5], ECAPA-TDNN
[4] and ResNet34 [10]. The ResNet34 model contains four
residual blocks with different channel sizes, [64, 128, 256, 512],
in each block. The ECAPA-TDNN model with 1024 channels
is built according to [4].

It can be found in Table 1 that, as an improved variant
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Table 1: Performance comparison of different network architectures on the VoxCeleb1 and CN-Celeb test sets. Data augmentation
strategy and experimental setup are kept consistent throughout all experiments.

Architecture Params(M) VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H CN-Celeb Test
EER(%)/MinDCF EER(%)/MinDCF EER(%)/MinDCF EER(%)/MinDCF

TDNN 4.62 2.31/0.3223 2.37/0.2732 4.25/0.3931 9.86/0.6199
ECAPA-TDNN 14.66 0.89/0.0921 1.07/0.1185 1.98/0.1956 7.45/0.4127

ResNet34 6.70 0.97/0.0877 1.03/0.1133 1.88/0.1778 6.97/0.3859
D-TDNN 2.85 1.55/0.1656 1.63/0.1748 2.86/0.2571 8.41/0.4683

D-TDNN-L 6.40 1.19/0.1179 1.21/0.1287 2.22/0.2047 7.82/0.4336
CAM++ 7.18 0.73/0.0911 0.89/0.0995 1.76/0.1729 6.78/0.3830

-w/o Masking 6.64 0.93/0.1022 1.03/0.1144 1.86/0.1762 7.16/0.3947
-w/o FCM 6.94 0.98/0.1127 1.01/0.1175 2.03/0.2006 7.17/0.4011

Table 2: Performance comparison of multiple key components
of CAM++. GP represents masking with only global pooling
and SP denotes segment pooling.

Method Params(M) CN-Celeb Test
EER(%) MinDCF

D-TDNN 2.85 8.41 0.4683
CAM [6] 4.10 7.80 0.4431

GP 3.07 7.78 0.4321
GP+SP 3.07 7.59 0.4209

of TDNN, ECAPA-TDNN achieves impressive improvement
in EER and MinDCF but requires large amounts of parame-
ters. Using dense connection, D-TDNN outperforms TDNN
with fewer parameters. Compared to the standard D-TDNN, it
can be found that deeper D-TDNN-L proposed in Section 2.2
achieves significant performance improvement, thanks to in-
creased parameters and effective modifications. However, there
is still a large performance gap compared to ECAPA-TDNN
or ResNet34. When we equip the D-TDNN-L backbone with
CAM with multi-granularity pooling and FCM, CAM++ con-
sistently performs better than the ECAPA-TDNN and ResNet34
baselines. In particular, CAM++ has relative 51% fewer param-
eters and 18% lower EER than ECAPA-TDNN in VoxCeleb-O.

Next, we remove individual components to explore the con-
tribution of each to the performance improvements. It can be
observed that CAM with multi-granularity pooling improves the
EER in VoxCeleb-O and CN-Celeb test sets by 21% and 5%, re-
spectively. This confirms the benefit of aggregating contextual
vectors at different levels to perform attention masking. Re-
moving FCM leads to a obvious increase in EER and MinDCF
in all test sets. This phenomenon indicates that stronger speaker
embeddings can be obtained from a hybrid of two-dimensional
convolution and TDNN-based network.

3.4. Impacts of multi-granularity pooling

We further evaluate the effectiveness of the improved CAM
with multi-granularity pooling. Additional experimental results
on the CN-Celeb test set are presented in Table 2. We use D-
TDNN [5] as the baseline. We re-implement the CAM proposed
in [6] on CN-Celeb, and find it decrease the EER by 7% rel-
atively but with a 44% increase in parameters. Next, We ap-
ply the improved CAM proposed in Section 2.3 to D-TDNN
only with global average pooling (GP), which results in simi-
lar improvement in EER with only an 8% increase in parame-
ters, demonstrating better parameters efficiency. We then apply

Table 3: The number of parameters, floating-point operations
(FLOPs) and real-time factor (RTF) of different models. RTF
was evaluated on CPU under single-thread condition.

Model Params(M) FLOPs(G) RTF
ECAPA-TDNN 14.66 3.96 0.033

ResNet34 6.70 6.84 0.032
CAM++ 7.18 1.72 0.013

segment average pooling (SP) and fuse it with GP, observing
performance gains without introducing additional parameters.
These results indicate the importance of local segment contex-
tual information in performing more accurate masking.

3.5. Complexity analysis

In this section, we compare the complexity of ECAPA-TDNN,
ResNet34 and CAM++ models, including the number of param-
eters, floating-point operations (FLOPs) and real-time factor
(RTF), as shown in Table 3. RTF was evaluated on the CPU de-
vice under single-thread condition. When comparing CAM++
with ResNet34, CAM++ has slightly more parameters but sig-
nificant fewer FLOPs. At the same time, CAM++ has half the
parameters and FLOPs of ECAPA-TDNN. It is worth noting
that CAM++ achieves more than twice the inference speed of
both ResNet34 and ECAPA-TDNN. Although ResNet34 and
ECAPA-TDNN have a similar RTF, they have different FLOPs.
This is likely due to increased memory access resulting from
higher parameter data dependencies, which leads to increased
computation time.

4. Conclusion

This paper proposed CAM++, an efficient speaker embedding
model for speaker verification. Our novel context-aware mask-
ing method aimed to focus on the speaker of interest and im-
proved the quality of features, while multi-granularity pooling
fused different levels of contextual information to generate ac-
curate attention weights. We conducted comprehensive exper-
iments on two public benchmarks, VoxCeleb and CN-Celeb.
The results demonstrated that CAM++ achieved superior per-
formance with lower computational complexity and faster in-
ference speed than popular ECAPA-TDNN and ResNet34 sys-
tems.
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