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Abstract
Spoken Language Understanding (SLU) systems com-

monly use cascading structures. However, these systems are
prone to error propagation, information loss, high costs, and la-
tency, leading researchers to explore end-to-end (E2E) SLU as
a hot topic. However, E2E SLU faces the challenge of insuffi-
cient data, resulting in most previous work relying on pretrained
acoustic models. Nevertheless, pre-training task and SLU task
solution spaces are often substantially different, making it dif-
ficult for E2E SLU models to surpass cascading models. To
address this, we propose using OpenAI’s Whisper model for
SLU tasks. We employ the Sequence-level Multitask Learning
(SML) paradigm, which encodes multiple ASR-related tasks
into a sequence for learning. Our method significantly outper-
forms the E2E baseline by a large margin (with a 10% improve-
ment in EM score) and even outperforms cascading models,
achieving a 77% EM score on the STOP dataset, demonstrat-
ing its effectiveness.
Index Terms: Spoken Language Understanding, SLU, Transfer
Learning, Multitask Learning

1. Introduction
Over the years, speech recognition has gained significant at-
tention due to its increasing usage in popular customer devices
such as Alexa, Siri, and more. As the use of these systems be-
comes more prevalent, accurately recognizing user intent and
desires has become an important task. Traditionally, an SLU
system has been implemented through a cascaded approach by
concatenating a set of components. These components typically
include an ASR model that transcribes spoken information into
transcripts, and an NLU model that extracts intent and fills key
entities into pre-defined slots to create formalized instructions
[1].

However, cascaded systems have the possibility of propa-
gating errors through components, which can lead to undesir-
able results. For example, the absence of a single keyword in an
ASR transcript can lead to a completely different outcome by
the NLU system. Additionally, cascaded systems have the risk
of losing important information. The intonation and emphasis
of speakers cannot be explicitly expressed in ASR transcripts.

To address these issues, E2E models are proposed that pre-
dict intent directly from given audio. This approach eliminates
the need for concatenating multiple components and provides a
more accurate and efficient way to recognize the user’s intent.

Although the E2E approach offers several advantages, the
limited amount of available data makes it difficult to train an
E2E model from scratch. As a result, previous studies have pri-
marily relied on transfer learning to adapt pretrained acoustic
models, such as Wav2vec 2.0[2, 3] or Hubert [4], to the SLU

please pause the song!

WhiSLU Model

<|startoftranscript|>  {
    "Gender": "Female", 
    "Native": "Yes", 
    "Text": "please pause the song",
    "Domain": "music", 
    "Intent": "[IN:PAUSE_MUSIC [SL:MUSIC_TYPE SONG ] ]"
}  <|endoftext|>

Figure 1: This figure presents an example of WhiSLU’s predic-
tion. The model is trained to directly generate a well-formatted
JSON string, learned from the sequence-level multitask learn-
ing strategy. The “Intent” entry represents the main task predic-
tion, while the remaining entries correspond to the predictions
of auxiliary tasks.

task. However, the significant difference in the solution space
between the pretraining task and the downstream task often re-
sults in difficulty with transfer learning. For example, while pre-
trained models aim to learn low-level acoustic representation at
the pre-training stage, they require learning high-level seman-
tic information in the challenging SLU task. Therefore, some
approaches [5] have also employed pretrained ASR models, but
the scale of the model and pretraining dataset remains limited.
Consequently, none of these approaches have outperformed the
cascade method.

In this paper, we propose a novel approach to tackle these
challenges and enhance the efficacy of using pretrained models
for spoken language understanding. Specifically, we explore
two research questions: (1) How to alleviate the difficulty of
task transfer learning when there are substantial differences in
solution spaces, and (2) how to enhance the efficiency of fine-
tuning large-scale ASR models.

To address these research questions, we use a pretrained
model called Whisper[6], which integrates multilingual Auto-
matic Speech Recognition (ASR) and speech translation tasks.
The original tasks of Whisper have significant overlap with the
downstream task of SLU, allowing us to leverage the model for
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Intent Percentage of
Intent Slot Percentage of

Slot Gender Percentage of
Gender Native English Percentage of

whether native speaker
GET WEATHER 14.60% DATA TIME 23.93% Female 44.55% Native 95.18%

CREATE ALARM 7.48% LOCATION 7.89% Male 54.62% Non-native 4.09%
CREATE REMINDER 7.03% TODO 7.25% Non-binary 0.79% Prefer not to say 0.73%

... ... ... ... Unanswered 0.04% - -

Table 1: STOP statistics about intent, slot, gender and native English speakers. Specifically, the dataset comprises 80 distinct intents
and 82 different slots, with only the top 3 being displayed. The gender distribution is composed of 4 classes, wherein both the male
and female categories constitute approximately half of the total number of recordings. Regarding the proficiency of English speakers,
the majority of audio files belong to native speakers, as evidenced by the proportion of native speakers being higher than non-native
speakers.

file id domain gender native utterance decoupled normalized seqlogical
eval 0/alarm eval 0

/00002321.wav alarm Female Yes Set an alarm tomorrow
[IN:CREATE ALARM

[SL:DATE TIME ] ]
eval 1/alarm eval
/00000938.wav alarm Female Yes where are my alarms? [IN:GET ALARM ]

Table 2: STOP dataset semantic parse samples.

SLU with minimal additional training.

To further enhance the effectiveness of our approach, we
propose a Sequence-level Multitask Learning paradigm, which
utilizes multiple ASR-related tasks such as domain classifica-
tion, speaker gender classification, and accent classification to
extract critical information level by level for the final NLU
task. The labels of these tasks are concatenated into a text
sequence with the NLU labels as the last part, which can be
trained through the auto-regressive text generation paradigm,
and thereby requires no additional parameters.

This paper makes the following contributions:

• We introduce WhiSLU, an end-to-end SLU model that lever-
ages sequence-level multitask learning to perform transfer
learning with the pretrained Whisper model.

• Through our experiments evaluated on the STOP [5] dataset,
we demonstrate that WhiSLU significantly outperforms both
end-to-end (by 10%) and cascade (by 5%) SLU models, high-
lighting its superior performance and efficiency.

2. Method

2.1. Background

2.1.1. SLU Dataset

Spoken Task-Oriented Semantic Parsing (STOP) [5] is a re-
cently released SLU dataset built on top of the previous text-
only NLU dataset TOPv2 [7]. All utterances in STOP are
recorded by humans and undergo rigorous quality checking.
In addition to surpassing previous datasets, such as FSC [8]
and SLURP [9], in terms of data size, STOP also poses a
greater challenge due to its higher complexity, containing nu-
merous semantic parses with multiple layers of nesting, and a
greater number of intents and slots. Furthermore, STOP pro-
vides additional low-resource splits and synthetic speech gen-
erated through TTS to support low-resource SLU research. In
our paper, our model is tested mainly on the high-resource split.
Some of the examples are shown in Table 2. Table 1 presents
the statistics of the STOP dataset.

2.1.2. Whisper

Whisper [6] is a large-scale speech processing model proposed
by OpenAI. It was trained on a collection of over 680,000 hours
of speech-text pairs collected from the internet and is capable
of performing multilingual ASR and speech translation tasks.
Whisper can handle not only short audio segments but also long
audio thanks to its built-in time labeling mechanism.

The Whisper model uses the standard Transformer [10]
architecture with an additional two layers of 1D convolu-
tion set before the encoder for down-sampling the input mel-
spectrogram features. Whisper achieves state-of-the-art perfor-
mance on multiple publicly available datasets and has strong
robustness. Compared to other unsupervised speech pretrain-
ing models such as Wav2vec 2.0 [2] or Hubert [4], Whisper’s
output space is usually closer to downstream tasks, making it
more suitable as a pretrained model for task transferring. Mean-
while, the scale of the training set is also larger than the previous
works. Therefore, we chose Whisper as the pretrained model
for SLU.

2.2. Efficient Transfer Learning

Transfer learning is a commonly used technique to adapt a pre-
trained model for a different task or domain. However, most
task-level transfer learning requires adding additional parame-
ters to the pre-trained model to deal with the significant differ-
ences between both tasks [11]. For example, when fine-tuning a
pretrained BERT [12] model on sequence labeling tasks, an ad-
ditional classifier is typically needed [13, 14]. Similarly, using
pretrained acoustic models like Wav2vec 2.0 in the SLU task
often requires adding an extra decoder. In contrast, since the
Whisper model is already pretrained on the speech-to-text task
and the SLU label space is a subset of the Whisper vocabulary
space, we can directly fine-tune Whisper on SLU labels using
the sequence-to-sequence paradigm without additional parame-
ters.

In addition to performing full-parameter fine-tuning on dif-
ferent sizes of Whisper models (except for large, where we froze
the encoder), we also attempted a lower-cost fine-tuning ap-
proach, i.e. LoRA [15]. LoRA first fixes the parameters of the
original pretrained model and injects two low-rank decomposi-
tion matrices into the linear weights of attention layers in the
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Transformer, greatly reducing the number of parameters that
need to be updated during fine-tuning. In the experiment, we
only used LoRA for the large model.

2.3. Sequence Level Multitask Learning

Although Whisper performs well on the ASR task, the model
does not necessarily require strong semantic understanding ca-
pabilities because we found that training the model solely on
NLU labels using seq2seq training can easily lead to a perfor-
mance bottleneck. Additionally, we found that there are of-
ten many errors in the leaf nodes of the SLU semantic parse
tree predicted by the model, which may be due to the model
losing its original ASR capabilities during SLU training, a
phenomenon known as catastrophic forgetting. Therefore, we
propose a method called Sequence Level Multitask Learning
(SML), which combines labels of multiple tasks into a sequence
for the model to learn through seq2seq training. These tasks in-
clude speaker gender classification, speaker nativeness classifi-
cation, ASR, domain classification, and SLU. These tasks are
arranged in the above order to extract information from acous-
tics to semantics step by step, assisting the final SLU task.

Formally, we denote the set of related tasks as T , the la-
bel space of each task as Yt, where t ∈ T , and the vocabu-
lary of the Whisper model as V . Using the Whisper tokenizer
ϕ, we can tokenize the labels of each task into a sequence of
sub-words (tokens) that belong to the vocabulary of Whisper:
yV
t = ϕ(yt), where yt ∈ Yt. This enables us to convert task-

specific labels from their respective label spaces into the vo-
cabulary space of Whisper, allowing us to formulate them as a
sequence-to-sequence task:

P (Y|X) =
∏

t∈T
P (yV

t |yV
<t,X; θ), (1)

where yV
<t represents all tokens before the current task, and

θ is the parameter set of the Whisper model or possibly intro-
duced parameters.

During our experiment, we encoded all labels into a JSON
string (as illustrated in Figure 1) and tokenized it with the Whis-
per tokenizer, instead of simply concatenating label tokens. Our
findings show that the encoded label sequence with an orga-
nized format and explicit keys as separators can aid the model
in learning multiple tasks with greater ease. Additionally, this
approach also simplifies the post-processing.

3. Experiments
3.1. Experimental Setup

We evaluated our approach using the Whisper-base, Whisper-
medium, and Whisper-large models. For the base and medium
models, we fine-tuned all parameters, while for the large model,
we froze the encoder and only fine-tuned the parameters in the
decoder. We only apply LoRA on the Whisper-large model with
the WQ and WV weight matrices in all attention layers being
injected, the rank r is set as 32 and α set as 64. We trained all
models with 4 V100 GPUs for 20,000 steps, setting the learning
rate to 1e-4 and the batch size equivalent to 8 per card with
accumulation steps being varied for each model.

3.2. Metrics

Our primary evaluation metric is Exact Match accuracy (EM),
which assesses the quality of the predicted SLU sequence by

assigning a value of 1 if all tokens match the ground truth se-
quence and 0 otherwise. The resulting score is then normalized
by the size of the testing set.

To evaluate the structure accuracy of the semantic parsing
tree, we also use Tree EM, as suggested in [5], which ignores
leaf nodes in the predicted slots during matching. Additionally,
we use WER as a more tolerant metric.

All semantic-parse related metrics are computed based on
the text in the decoupled normalized seqlogical field of the
original manifest file.

Furthermore, we report the WER score of the predicted
transcripts, as well as the Mathews Coefficient (MCC) of the
auxiliary classification tasks.

3.3. Baseline Systems

We compare WhiSLU against four types of baseline systems:

• The cascade system proposed in [5], which consists of an
ASR model (pretrained Wav2vec 2.0 [2] finetuned on the
STOP training set) and an NLU model (pretrained BART-
base [16] finetuned on the STOP text data).

• A pretrained Wav2Vec 2.0 [2] model with an additional at-
tention decoder. It is first finetuned it on the STOP ASR tran-
scripts and then on the STOP semantic parses [5].

• A pretrained Hubert [4] model with an additional attention
decoder. It is first finetuned it on the STOP ASR transcripts
and then on the STOP semantic parses [5].

• The Whisper model with three sizes, directly finetuned on
STOP semantic parse sequences.

3.4. Experimental Results

3.4.1. Overall Comparison

Table 4 presents the results of WhiSLU on the STOP test set.
Compared with the baseline models provided by the official
baseline, WhiSLU significantly outperforms them, regardless
of whether SML is used or not, and also surpasses the cascade
system with a large margin. This demonstrates that for SLU
task transfer, models like Whisper that are directly pretrained
on the speech-to-text task have stronger advantages than mod-
els that undergo unsupervised pretraining on acoustic features
and then finetuning on limited ASR data.

3.4.2. Effectiveness of Sequence Level Multitask Learning

Table 3 presents the results of Whisper models of different
sizes trained with or without Sequence Level Multitask Learn-
ing (SML). It is clear that using SML leads to consistent perfor-
mance improvements (1-3 points in EM), fully demonstrating
the effectiveness of SML. From a model size perspective, larger
models can achieve better performance in both settings, which
is also in line with expectations. Besides, we further analyzed
which auxiliary tasks are more helpful in improving the per-
formance of the SLU task and found that ASR task provides
the greatest help to SLU, followed by domain classification,
while gender and nativeness have little impact on SLU. An un-
expected result was observed in the classification performance
of gender and nativeness, where WhiSLU-large-SML did not
achieve the best performance. This could be attributed to the
frozen encoder parameters, which may not have fully adapted
to the acoustic features of the STOP dataset. Since both tasks
are more related to low-level acoustic information extraction,
this could have contributed to the suboptimal performance.
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Model EM EM-TREE ASR-WER MCC-domain MCC-gender MCC-nativeness

WhiSLU-base 68.32 81.57 - - - -
WhiSLU-base-SML 71.26 83.03 16.18 0.987 0.9477 0.3537

WhiSLU-medium 73.3 85.17 - - - -
WhiSLU-medium-SML 74.13 85.46 10.85 0.9874 0.9463 0.4054

WhiSLU-large 74.49 84.89 - - - -
WhiSLU-large-SML 76.68 86.37 3.19 0.9889 0.9017 0.3572
Table 3: Comparison of seq-level multitask learning. We conducted a comparison of the performance of the Whisper model at different
sizes (base, medium, and large) with and without sequence-level multitask learning (SML). The results indicate that employing SML
can lead to improved EM and EM-TREE performance, across all three model sizes. Specifically, we observed a positive correlation
between EM, EM-TREE, and ASR-WER for the ASR prediction subtask. For the other three subtasks, which involve the prediction of
Domain, Gender, and Nativeness, we used the Matthews Correlation Coefficient (MCC) to evaluate the performance of the WhiSLU
models, and found only small differences among the three different sizes.

Model EM EM-TREE SLU-wer

wav2vec2.0 [5] 68.70 82.78 -
HuBERT [5] 69.23 82.87 -
cascade system 72.36 82.78 -

WhiSLU-large 74.49 84.89 6.8103
WhiSLU-large-SML 76.68 86.37 6.1407
Table 4: Overall comparison result. The table illustrates a com-
parison between the performance of the baseline models and
our proposed WhiSLU models. Notably, both the WhiSLU-large
models with and without the sequence-level multitask learning
(SML) strategy achieved significant improvements in EM, EM-
TREE, and SLU-wer. This suggests that our proposed method
of transferring knowledge from the ASR model to the NLU task
is effective in enhancing the performance of the WhiSLU model.

Model # Trainable Params EM EM-TREE

WhiSLU-base-SML 74M 68.32 81.57
WhiSLU-large-LoRA 15M 72.96 83.03
WhiSLU-large-LoRA-SML 15M 71.98 81.33
WhiSLU-large-SML 1550M 76.68 86.37

Table 5: Finetuning Efficiency with LoRA. The findings demon-
strate that utilizing LoRA on the WhiSLU-large model requires
training only 1% of the parameters to outperform the per-
formance achieved through full parameter finetuning with the
WhiSLU-base model. This implies a substantial enhancement
in finetuning efficiency.

3.4.3. Finetuning Efficiency with LoRA

Table 5 displays the results of WhiSLU after finetuning with
LoRA. The outcomes illustrate that using LoRA on Whisper-
large only necessitates training 1% of the parameters to sur-
pass the performance of full parameter finetuning with Whisper-
base, resulting in a significant improvement in finetuning effi-
ciency. However, we discovered that using LoRA and SML
concurrently can result in the failure of SML training. Upon
analysis, we found that LoRA is generally useful for domain
transfer [15], but it faces difficulties with task transfer, espe-
cially in multi-task finetuning. In this scenario, the model’s per-
formance on the primary task may decrease, and may not be as

good as using the primary task as the sole target task (WhiSLU-
large-LoRA is better than WhiSLU-large-LoRA-SML).

4. Conclusion
In this paper, we aimed to apply the transfer learning ap-
proach to the Whisper model for the SLU task and proposed the
WhiSLU model. In contrast to traditional sequence-to-sequence
finetuning, we introduced the sequence-level multitask learn-
ing paradigm, which prioritizes tasks according to their seman-
tic complexity and concatenates their labels into a formatted
JSON sequence for the model to learn to generate directly. This
paradigm allows for smoother task transfer learning and im-
proves the main task’s performance by leveraging auxiliary task
predictions. Additionally, we explored using LoRA for efficient
finetuning of models with large parameter sizes and achieved
strong baseline performance by training only 1% of the param-
eters. Finally, experimental results demonstrated that WhiSLU
significantly outperformed E2E and cascade baselines on the
STOP dataset, achieving state-of-the-art performance. Our fu-
ture work will focus on enhancing WhiSLU’s performance in
low-resource scenarios.
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