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Abstract
The ability to detect auditory attention from electroencephalog-
raphy (EEG) offers many possibilities for brain-computer inter-
face (BCI) applications, such as hearing assistive devices. How-
ever, effective feature representation for EEG signals remains a
challenge due to the complex spatial and temporal dynamics of
EEG signals. To overcome this challenge, we introduce a Spa-
tiotemporal Graph Convolutional Network (ST-GCN), which
combines a temporal attention mechanism and a graph convolu-
tional module. The temporal attention mechanism captures the
temporal dynamics of EEG segments, while the graph convolu-
tional module learns the spatial pattern of multi-channel EEG
signals. We evaluate the performance of our proposed ST-GCN
on two publicly available datasets and demonstrate significant
improvements over existing state-of-the-art models. These find-
ings suggest that the ST-GCN model has the potential to ad-
vance auditory attention detection in real-life BCI applications.
Index Terms: Auditory attention, cocktail party problem, tem-
poral attention, graph convolutional network

1. Introduction
The “cocktail party effect” refers to humans’ ability to selec-
tively focus on a particular speaker in the presence of multiple
speakers [1]. Recent neuroscience research has shown that au-
ditory attention is a neural activity that can be detected from
brain signals, which is referred to as auditory attention detec-
tion (AAD) [2]. O’Sullivan et al. [3] first validated the idea
of EEG-enabled AAD. Due to its noninvasiveness and ease of
use, various methods have been developed to detect auditory at-
tention from EEG, an overview of which can be found in [4].
However, effective feature learning from raw EEG signals re-
mains a challenge in AAD tasks, especially under low-latency
conditions.

Previous studies have revealed that the selective auditory
task involves spatially separated brain areas [5]. The spatial
patterns of neural responses to speech stimuli are crucial for
detecting auditory attention. Inspired by this, the common spa-
tial pattern (CSP) method has been used for spatial feature ex-
traction in EEG-enabled AAD [6]. Apart from the traditional
method, Vandecappelle et al. [7] applied a convolutional neural
network (CNN) to extract spatial features related to auditory at-
tention from EEG signals, which yielded good results for low-
latency AAD (around 81% accuracy within 1-2 s). Although
CNNs are typically used to extract local features from contin-

uous signals, EEG signals exist in the discrete and discontin-
uous spatial domain. In this case, graph-based representation
methods would provide a more effective approach. One such
method is the graph convolutional network (GCN), which ex-
tends traditional CNN methods by incorporating spectral the-
ory [8]. GCNs have been successful in various tasks, including
human pose recognition, traffic prediction, and disease predic-
tion, where the topological relationship between input features
is crucial. Building on this success, we propose a graph-based
description method for multi-channel EEG signals that captures
the spatial relationships throughout the whole brain.

Moreover, EEG signals are dynamic time-series data, con-
taining rich temporal information [9]. Recent research has re-
vealed that spatiotemporal patterns in the human brain reflect
attentional regulation during selective listening [5]. Therefore,
we hypothesize that the accuracy of AAD can be improved
by capturing the complex temporal dynamics of EEG signals.
To explore this hypothesis, we introduced a temporal attention
mechanism that assigns varying weights to a sequence of EEG
signals, enabling feature extraction in the time domain. In re-
cent years, attention has been incorporated into various neu-
ral network architectures, including recurrent neural networks
(RNNs) and CNNs, to simulate selective attention in neurophys-
iological studies [10]. By incorporating the temporal attention
module, we aim to capture the complex temporal dynamics of
EEG signals and enhance the detection of even subtle changes
in attentional states over time.

This study proposes a spatiotemporal graph convolutional
network (ST-GCN) to detect auditory attention from EEG sig-
nals. By combining spatial and temporal attention mechanisms,
ST-GCN can mimic the human ability to selectively focus on
specific sounds. The end-to-end framework of ST-GCN extracts
more discriminative EEG features, resulting in improved AAD
performance.

The structure of this paper is outlined as follows. The sec-
ond section outlines the structure of the proposed ST-GCN. The
third section provides detailed information about the datasets,
including preprocessing, model training, and evaluation. In the
fourth section, we present the results of our experiments and an-
alyze our findings. Finally, we conclude this paper in the fifth
section.

2. Methods
The proposed ST-GCN model presents an innovative end-to-
end framework that analyzes raw EEG signals and effectively
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Figure 1: The architecture of the spatiotemporal graph convolutional network, i.e., ST-GCN, which is an end-to-end AAD solution. It
takes EEG signals as input and performs binary decision-making to detect auditory attention.

detects auditory attention, as depicted in Fig. 1. First, multi-
channel EEG is encoded into an EEG graph to preserve the
topological information (Fig. 1 (a)). Then, a graph convolu-
tional module is applied to learn the inherent relationship be-
tween different EEG channels (Fig. 1 (b)). To further enhance
the model’s performance, a temporal attention module is intro-
duced to explore the attentive temporal dynamics across diverse
EEG graphs, thereby creating a comprehensive spatiotemporal
representation of the EEG signals (Fig. 1 (c)). Finally, a back-
end classifier is designed to detect auditory attention by lever-
aging the derived EEG features (Fig. 1 (d)).

2.1. EEG Graph

Assuming the raw EEG signal comprises N channels, each
channel is considered a node in the graph representation. There-
fore, the EEG signal Es can be transformed into an undirected
graph G = (V,E) in a non-Euclidean space. Specifically, V
represents the set of nodes, where |V | = N , and (Vi, Vj) ∈ E
denotes the set of edges connecting these channels. To capture
the intrinsic relationships between the EEG channels, an adja-
cency matrix A ∈ RN×N is introduced. The elements of this
matrix are pre-determined based on the spatial relationship of
the EEG channels, as shown in Fig. 2. The entry of the adja-
cency matrix ai,j measures the level of connection between the
channels i and j.

Figure 2: The spatial relationship of 64-channel EEG.

2.2. Graph Convolution

The GCN theory extends the traditional convolutional opera-
tion, commonly used on grid data in Euclidean space, to graph
data in non-Euclidean space [8]. Specifically, the graph convo-
lution aggregates features of a vertex and its neighboring ver-
tices to generate a comprehensive representation of the vertex.
As defined in [11], the convolution operation is realized by com-
puting the eigendecomposition of the graph Laplacian in the
Fourier domain. The Laplacian matrix of a graph can be ex-
pressed as L = D−A = UΛUT , where D represents the degree
matrix, U is the matrix of eigenvectors, and Λ is the diagonal
matrix of eigenvalues. The graph convolutional operation can
be formulated as the multiplication of a signal x with a filter
gθ = diag(θ), which is parameterized by θ ∈ RN :

x
′
= UgθUT x (1)

Here we apply a graph convolutional module for represen-
tation learning of the EEG graph G, as shown in Fig. 1 (b), and
obtain the feature representation F = [E1

p, . . . ,Em
p , . . . ,EC

p ] ∈
RC×N×T , where C denotes the number of graph convolutional
kernels.

2.3. Temporal Attention

Attention mechanisms have been extensively studied in deep
neural networks [10], and are commonly used in various ma-
chine learning tasks to selectively focus on relevant informa-
tion. At run-time inference, attention modulation assigns dif-
ferentiated weights to samples at discrete instants of time. To
enhance the representation ability of the model, a temporal at-
tention module is employed, as shown in Fig. 1(c), to concen-
trate on important components and suppress unnecessary ones
over time. In this study, attention modulation is executed in the
following manner.

First, Em
p is transformed into query Em

q , key Em
k , and value

Em
v using linear projection.

Em
q = β((Em

p )T Wq) ∈ RT×dk

Em
k = β((Em

p )T Wk) ∈ RT×dk

Em
v = β((Em

p )T Wv)W
′
v ∈ RT×N

(2)

where Wq ∈ RN×dk , Wk ∈ RN×dk , Wv ∈ RN×dk , W
′
v ∈

Rdk×N . β(·) denotes the tanh activation function.
Second, the relationship between the query Em

q and key Em
k

can be computed using a dot product,
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Mm
a = Em

q (Em
k )T ∈ RT×T (3)

where Mm
a is the temporal attention weights.

Finally, attention weights are dynamically assigned to EEG
over time, and the attention-weighted summation Em

a can be
obtained:

Em
a = (Em

v )T Mm
a ∈ RN×T (4)

2.4. AAD Classifier

The back-end classifier first incorporates the optimized feature
Em

a into Em
p by

Em
o = Em

p

⊗
Em

a ∈ RN×T (5)

where
⊗

denotes a point-wise multiplication.
The EEG feature Eo, which is represented as

[E1
o, . . . ,Em

o , . . . ,EC
o ] ∈ RC×N×T , is then passed through a

temporal pooling layer and fc layers with sigmoid activation
function to produce a probability vector E

′
o ∈ R2.

Finally, the binary cross-entropy loss is used for the AAD
task:

L = − 1

L

L∑

l=1

yl · logpl + (1− yl) · log(1− pl) (6)

where yl denotes the label of l-th decision window.

3. Experiments
3.1. AAD Datasets

To facilitate a comparative study, we perform the experiments
on two independent and public datasets, which are referred to
as DTU [12, 13] and KUL [7, 14].

1) DTU dataset: The study involved 18 individuals with
normal hearing who were presented with two different auditory
streams, each consisting of one male and one female speaker
talking simultaneously. The two streams were positioned 60
degrees to the left and right, and each participant listened to a
total of 60 trials, with each trial lasting approximately 50 sec-
onds. EEG data were recorded using 64 channels, resulting in a
total of 15.0 hours of data.

2) KUL dataset: A total of 16 participants with self-
reported normal hearing were included in the study. EEG data
were recorded using 64 channels to capture brain activity. The
speech stimuli consisted of a collection of Dutch stories nar-
rated by various male speakers. During each trial, participants
were presented with two auditory streams positioned at 90 de-
grees to the left and right of their listening position. They were
instructed to selectively focus on one of the two competing
streams. Each participant contributed approximately 48 min-
utes of EEG data, resulting in a cumulative EEG dataset of 12.8
hours across all subjects.

3.2. Data Preprocessing

The EEG signals were preprocessed following the methods used
in previous AAD studies [7, 15], which involved band-pass fil-
tering between 1 and 32 Hz and downsampling to 128 Hz. To
segment the data into shorter durations, referred to as decision

windows, we applied an overlapping time window. Given that
humans can switch their auditory attention between speakers
in approximately 1 second [6], low-latency AAD solutions are
needed for real-world applications. Thus, this study focused on
decision windows of 0.1 s, 0.2 s, 0.5 s, and 1 s to achieve low-
latency AAD performance.

3.3. Model Implementation and Evaluation

The AAD models were trained and evaluated using a 5-
fold cross-validation approach with nested cross-validation
loops [16]. The accuracy of AAD is measured as the propor-
tion of correctly identified windows compared to the total num-
ber of decision windows in the test set [7, 15]. The average
accuracy over all the testing folds is reported as the final re-
sult. All hyperparameters are grid-searched on the validation
set to choose reasonable values. During training, the network
is updated using Adam optimizer with a learning rate of 10−3.
To prevent overfitting and enhance generalization, dropout and
batch normalization techniques are implemented. The PyTorch
framework was utilized to implement all models, and the train-
ing process was performed on 2 NVIDIA TITAN Xp Pascal
GPUs.

Here we present the proposed model with a case study of
a 1-second decision window. The EEG data Es ∈ R128×64,
which represents 128 samples by 64 channels, is first encoded
into an EEG graph G. Then, the graph convolutional module
uses a trainable weight matrix gθ ∈ R5×64×64 to learn the spa-
tial information from the EEG graph G. In the temporal at-
tention module, the scale factor dk is set to 8, which is used
to derive an output Em

a ∈ R128×64 from the EEG graph. The
original features are then combined with the output from the
temporal attention module to obtain the final feature represen-
tation Eo ∈ R5×128×64. Finally, a global average pooling layer
is applied along the temporal dimension, and the resulting data
is flattened into a one-dimensional vector for use as inputs to fc
layers (input: 8, output: 2) to detect auditory attention.

4. Results and Discussion
4.1. Analysis of Graph Learning

The effectiveness of graph learning for EEG signals is explored
by comparing the performance of GCN and CNN models. To
ensure a fair comparison, the CNN-based AAD model from [7]
is re-implemented under the same experimental settings. It is
worth noting that the GCN model has fewer parameters than
the CNN model, with only 2,930 parameters compared to 5,500
parameters.

As shown in Fig. 3, the CNN model achieves an average ac-
curacy of 63.3% (SD: 5.9) on the DTU dataset with a 1-second
decision window. In comparison, the GCN model significantly
outperforms the CNN model with an average accuracy of 73.1%
(SD: 7.61), resulting in a large margin of 9.8%. Similarly, the
GCN model (mean: 89.4%, SD: 6.35) outperforms the CNN
model (mean: 84.1%, SD: 10.16) by an average improvement
of 5.3% on the KUL dataset. These results indicate that GCNs
can learn the spatial features of EEG signals more effectively
than CNN models, resulting in better AAD performance. One
possible explanation is that CNNs are restricted in their ability
to capture the complex neighborhood information of EEG due
to their focus on local regions with fixed connections, while
GCNs can preserve the rich topology information of the brain,
leading to a more effective representation of EEG signals.
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Figure 3: AAD accuracy (%) for CNN and GCN models on the
KUL and DTU datasets using a decision window of 1 second.

4.2. Analysis of Temporal Attention

To assess the effectiveness of the temporal attention module,
an ablation analysis was conducted on both the KUL and DTU
datasets, using a 1-second decision window. Specifically, we
compared the AAD performance of two models: the GCN
model and the ST-GCN model that incorporates the temporal
attention module.

Our results demonstrate that the ST-GCN model consis-
tently outperforms the GCN model on both datasets. On the
KUL dataset with a 1-second decision window, the ST-GCN
model achieves a mean accuracy of 92.5% (SD: 5.56), which
is 3.1% higher than the GCN model. Similarly, on the DTU
dataset, the ST-GCN model achieves a mean accuracy of 77.3%
(SD: 6.80), which is 4.2% higher than the GCN model. Addi-
tionally, the statistical analysis demonstrates that the temporal
attention module contributes significantly to the improvement
in AAD performance (paired t-test: p <0.001).

The effectiveness of the temporal attention module can be
attributed to the fact that EEG signals are inherently dynamic
and complex, with different temporal patterns carrying different
amounts of information. By allowing the ST-GCN model to
focus on the most informative segments, the temporal attention
module is able to extract more discriminative features from the
EEG signals, leading to improved AAD performance.

4.3. Comparative study

Table 1 summarizes the comparison between the proposed ST-
GCN and the state-of-the-art STAnet [15]. Both models exhibit
similar sizes, each consisting of around 5000 parameters.

The results demonstrate the superior performance of the ST-
GCN model compared to STAnet on both the KUL and DTU
datasets across all four different decision windows. For the
DTU dataset, the ST-GCN model achieves an average AAD ac-
curacy of 77.3% for the 1-second decision window, which is a
notable improvement of 5.4% compared to STAnet. Similarly,
for the KUL dataset, the ST-GCN model achieves an average
AAD accuracy of 92.5% for the 1-second decision window, sur-
passing STAnet with a gain of 2.4%. Furthermore, ST-GCN
outperforms STAnet for all other decision windows as well,
with an average accuracy improvement of 4.1% and 4.2% on
the KUL and DTU datasets, respectively.

Table 1: The AAD accuracy (%) of different models on
KUL [14] and DTU [12] with different decision window sizes
was compared. Here ST-GCN model shows significantly higher
AAD accuracy than STAnet on both datasets (p <0.001).

Dataset Model Decision window (second)
0.1 0.2 0.5 1

DTU [12]
STAnet [15] 65.7 68.1 70.8 71.9

ST-GCN (Ours) 68.5 72.1 75.4 77.3

KUL [14]
STAnet [15] 80.8 84.3 87.2 90.1

ST-GCN (Ours) 86.2 89.1 91.0 92.5

In addition, we have also observed that the proposed ST-
GCN model achieves impressive AAD accuracy on the KUL
dataset, reaching 86.2% and 89.1% for decision windows of
0.1 seconds and 0.2 seconds, respectively. This suggests that
the ST-GCN model can enable near real-time detection of audi-
tory attention, which is crucial for practical applications, such
as neuro-steered hearing aids. These results demonstrate the
potential of the ST-GCN model to be adapted for real-world
scenarios where fast responses are required.

In sum, our proposed ST-GCN has shown efficacy in cap-
turing discriminative EEG features, which leads to enhanced
performance in AAD. Our findings support that spatiotemporal
information is valuable and plays a significant role in AAD.

5. Conclusions
In this study, we present a new AAD approach named ST-GCN
that can effectively detect auditory attention from EEG signals.
Our proposed ST-GCN can preserve the spatiotemporal dynam-
ics of EEG signals and extract discriminative features in an end-
to-end manner. We evaluated the performance of ST-GCN on
two publicly available datasets with comparing it with state-
of-the-art methods. Our findings confirm that spatiotemporal
information is informative and contributes significantly to the
AAD task. In future work, we will expand the proposed AAD
system to handle more complex scenarios where there are more
than two target speakers, such as cocktail party environments.
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