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Abstract
In this paper, we propose a novel Continual Learning ap-

proach, which is Randomly Layer-wise Tuning (CLRL-Tuning)
of a pre-trained Automatic Speech Recognition (ASR) model.
CLRL-Tuning tackles the randomness of subsequent datasets by
updating the parameters of randomly selected encoder layers of
the pre-trained model (such as wav2vec 2.0) for every training
epoch. CLRL-Tuning is different from the previous approaches
in that it neither uses previous datasets, nor expands/runs previ-
ous models. Furthermore, we perform experiments to evaluate
our approach compared with four strong baselines, including
Knowledge Distillation and Gradient Episodic Memory. Our
approach achieves significant improvements over the baselines
in average word error rate (WER) for the wav2vec 2.0 model.
Additionally, we implement ablation studies for our approach
by tuning one, three, six and full encoder layers of the model,
and experimental results show only tuning one encoder layer of
the model at each training epoch is the most effective way to
mitigate catastrophic forgetting.
Index Terms: automatic speech recognition, continual learn-
ing, lifelong learning, pre-trained model, partial layers tuning,
self-adaptation, fine-tuning.

1. Introduction
Continual/Incremental Learning is a process that trains a model
sequentially on multiple incrementally collected datasets rather
than trains it once on a whole combined dataset [1]. How-
ever, the differences in data distributions of datasets may induce
catastrophic forgetting [2] of knowledge learned from previous
datasets. For computer vision and automatic speech recogni-
tion (ASR), many methods have been developed to mitigate
catastrophic forgetting. These methods can be categorized into
three approaches: the parameter-based approach, data-based
approach and regularization-based approach.

Parameter-based methods dynamically increase model ca-
pacity to maintain previous knowledge by either creating sub-
networks for different tasks [3–5] or increasing the numbers
of layers and/or neurons [6, 7]. Here are two examples of
creating sub-networks for speech recognition: (i) Factorizing
the likelihood model of an HMM-DNN-based ASR model into
sub-models for different domains of datasets [8]; (ii) Insert-
ing adapters into pre-trained ASR models for learning new lan-
guages [9]. Nevertheless, parameter-based methods will signif-
icantly increase model sizes and make it difficult to tune hyper-
parameters of the models, especially when a new dataset size is
unknown.

Data-based methods [10–13] replay data either from stored
previous datasets or generated examples. However, the data
used for the previous tasks may not be permanently stored

where data storage is limited or where there are legal restric-
tions on data storage. (e.g., for privacy concerns [14]).

Regularization-based methods [15–19] incorporate addi-
tional regularization terms to consolidate the knowledge from
a previously trained model. This approach has been applied
to a multi-dialect acoustic model [20], which is continually
trained with regularization-based methods (e.g, Learning with-
out forgetting [15] and Elastic Weight Consolidation [17]). This
approach has also been applied to the continual training of
CTC-based ASR models [21] and pre-trained ASR models [22].
However, regularization-based methods require running previ-
ous models and can restrict the freedom of the model to learn
new tasks.

2. Motivation
Recently, pre-trained language models with parameter-efficient
prompt tuning has made significant progress, that learning
lightweight task-specific embeddings while freezing parameters
of a pre-trained language model [23–25]. This allows the model
to quickly adapt to a new task with minimal additional training,
while still leveraging the knowledge and capabilities of the pre-
trained model. Intuitively, we hypotheses a large pre-trained
ASR model contains prior knowledge learned from previous
datasets and large-scale of unlabelled speech utterances. As a
result, most of the pre-trained ASR model parameters trained
on different speech datasets are likely to be reusable in solving
the continual learning problem.

In this paper, we propose a Continual Learning approach by
Randomly Layer-wise Tuning (CLRL-Tuning) to utilize prior
knowledge of a pre-trained ASR model, i.e., wav2vec 2.0. Fol-
lowing the principle of lightweight tuning, which is to freeze
most of the pre-trained parameters and only tune a smaller set
of parameters [23–25], CLRL-Tuning updates the parameters of
a randomly selected encoder layer of the model for every epoch.
In Figure 1, we demonstrate a theoretical analysis schemati-
cally to compare our proposed CLRL-Tuning approach with the
previous approaches. Our proposed CLRL-Tuning approach is
different from the previous approaches in that it neither uses
previous datasets, nor expands/runs previous models. We per-
form experiments to evaluate our approach compared with four
strong baselines, including Knowledge Distillation [15] and
Gradient Episodic Memory [10]. Our approach achieves sig-
nificant improvements over the baselines in average word error
rate (WER) for the pre-trained wav2vec 2.0 [26] model. Ad-
ditionally, we implement ablation studies for our approach by
tuning one, three, six, and full encoder layers of the model. Ex-
perimental results show only tuning one encoder layer of the
model is the most effective way to mitigate catastrophic forget-
ting.
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Figure 1: Continual learning with different methods of mitigating catastrophic forgetting illustrated in schematic parameter spaces,
where the nth model with parameters θn is trained on the nth dataset Dn sequentially. (i) Direct fine-tuning method updates the
model parameters to fit a new dataset, leading to the problem of catastrophic forgetting where the model parameters diverge from
the region of the previous parameters; (ii) Parameter-based methods incrementally add new parameters to the model to adapt to new
dataset, but this can make it difficult to tune hyper-parameters of the model; (iii) To mitigate the issue of model parameters deviating
too far from the previous parameters, Data-based methods employ the replay of previous data samples to remind the model of its prior
training on previous datasets, and Regularization-based methods add regularization terms to the loss function that penalizes changes
to the parameters. (iv) CLRL-Tuning makes minor adjustments to the parameter space through layer-wise tuning of a large pre-trained
model. The advantage of using a pre-trained model is that it has already learned a generic and large shape of the parameter space
from larges-scale of unlabeled data. Consequently, most of the pre-trained model parameters can be shared across all datasets.

3. Methodology

3.1. Continual Learning by Randomly Layer-wise Tuning
of a Pre-trainded Model (CLRL-Tuning)

Suppose a pre-trained ASR model (e.g., wav2vec 2.0 [26], Hu-
BERT [27]) is continually trained on T datasets D1,D2...DT

with different data distributions, the model parameters trained
with these datasets is denoted as θ1,θ2, . . . ,θT , respectively.
We denote the current model as θt trained on the tth dataset
Dt, and t ∈ [1, . . . , T ]. Let the transformer-based pre-trained
ASR model comprises of M encoder layers (i.e., an encoder
layer consists of multi-heads self-attention sub-layer and fully
connected feed forward sub-layer). Before the start of every
epoch to train the current dataset Dt on the current model θt,
we randomly set a fixed number N encoder layers for param-
eters updating, and the rest of the M − N encoder layers are
set to be frozen. For each step of the training epoch, a batch of
input speech data is passed to the current model θt to generate
a text prediction. We use the Connectionist Temporal Classi-
fication (CTC) [28] loss as the objective function to calculate
the loss between the generated texts from the model θt and the
ground truth of the labeled text from the current dataset Dt.
This CTC loss (LCTC ) is used to update the parameters of the
current model θt.

The training framework for our proposed CLRL-Tuning ap-
proach is summarized in Algorithm 1. Our CLRL-Tuning ap-
proach trains a pre-trained ASR model on various datasets se-
quentially, and mitigates catastrophic forgetting by randomly
selecting and tuning partial encoder layers of the model and
freezing the rest of them during every training epoch. Ran-
domly selecting and tuning partial encoder layers resembles the
randomness of the future datasets distributions. Thus, our ap-
proach is more effective for mitigating catastrophic forgetting.
Moreover, our approach is simple to implement and avoids the
disadvantages of the parameter-based approach, the data-based
approach, and the regularization-based approach, that require
modifying neural network structure (or expanding neural net-
work capacity), reusing of previous datasets (i.e., Dt−1) and
reusing of previous ASR models (i.e., θt−1).

Algorithm 1: CLRL-Tuning
Inputs: number of stages T , number of epochs for each

stage K, number of training steps for each stage
S, pre-trained model θ, number of total encoder
layers M , number of encoder layers selected for
tunning N , datasets D = [D1, . . . ,DT ]

1 θ0 ← θ
2 for t← 1 to T do
3 θ0

t ← θt−1

4 for k ← 1 to K do
5 randomly select N indices of encoder layers
6 load θk−1

t and freeze the rest M −N layers
7 θk

t ←tune the model with S steps on Dt

8 end
9 θt ← θK

t

10 end
11 return θT

4. Experiments And Results
4.1. Datasets

We use four open source datasets, LibriSpeech-960h [29],
TIMIT-5h [30], LJSpeech-26h [31], and VCTK-44h [32], de-
noted asD1,D2,D3,D4 respectively, for our experiments. More
details about the four datasets with the configuration of their
training set, test set, and validation set are shown in Table 1.

Table 1: Datasets for the continual learning experiments

Data set Training Set Test Set Validation Set
LibriSpeech train-clean-100 test-clean dev-cleanD1

TIMIT 90% subset of 10% subset of TESTD2 TRAIN TRAIN
LJSpeech 80% subset of 10% subset of 10% subset of
D3 LJSpeech LJSpeech LJSpeech

VCTK 80% subset of 10% subset of 10% subset of
D4 VCTK VCTK VCTK
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Table 2: Experiment test sets results (WER %) on various meth-
ods.

Method
Datasets D1 D2 D3 D4 Avg

Individual 5.8 20.1 3.1 3.2 8.1
Fine-tuning

(i.e., CLRL-Tuning, N = 12)
θ2 6.8 12.0 9.4
θ3 11.3 23.6 2.5 12.5
θ4 16.4 27.3 11.4 2.2 14.3

Knowledge Distillation [15]
θ2 6.8 11.7 9.3
θ3 8.9 16.7 2.5 9.4
θ4 13.4 21.8 9.5 3.0 11.9

Gradient Episodic Memory [10]
θ2 6.7 11.8 9.3
θ3 9.0 16.3 2.3 9.2
θ4 13.2 20.2 8.5 3.2 11.3

Our Approach
(CLRL-Tuning, N = 1)

θ2 6.9 11.7 9.3
θ3 7.8 15.6 2.4 8.6
θ4 9.8 16.7 6.4 2.6 8.9

4.2. Experimental Settings

To evaluate our proposed CLRL-Tuning approach, we adopt
a commonly used transformer-based ASR model: wav2vec
2.0 [26] pre-trained on the full LibriSpeech-960h [29] dataset.
wav2vec 2.0 comprises of twelve encoder layers with twelve at-
tention heads for each encoder layer. We extract raw waveform
with 16000hz for the proposed datasets D1,D2,D3,D4. We use
Adam [33] to optimise the learning rate when training the ASR
model for the experiments. When decoding the prediction of
the ASR model, we use the beam search with a beam size of 10.

The wav2vec 2.0 model is continually trained using three
schemes: (i) Individual training : wav2vec 2.0 is trained on the
speech datasets D1,D2,D3,D4 individually to observe the per-
formances of the single models; (ii) Fine-tuning: wav2vec 2.0
is continually trained on the datasets sequentially to show catas-
trophic forgetting; (iii) Mitigating Forgetting: wav2vec 2.0 is
continually trained on the datasets sequentially with the Knowl-
edge Distillation [15] method, the Gradient Episodic Memory
[10] method (two strong baselines used in the lifelong learning
of end-to-end ASR studies [21]), and our proposed approach
CLRL-Tuning to compare with their performances.

We continually train the pre-trained wav2vec 2.0 model
with four training stages in the order of D1,D2,D3,D4, and the
model is trained for 50 epochs for each stage. We use the cur-
rent model trained on θt to evaluate them on the test sets of
the datasets Dt,Dt−1, . . . ,D1. For example, we evaluate the
current model θ3 on the current training dataset D3, and the
previous datasets D2 and D1. To show the catastrophic forget-
ting of sequential fine-tuning and compare the effectiveness of
mitigating forgetting methods, we need to start from a shared
fine-tuned model on D1. Thus, the first model θ1 in Algorithm
1 is fine-tuned directly on the datasetD1, and we apply mitigat-
ing forgetting methods to the subsequent datasets.

4.2.1. Knowledge Distillation (KD)

For the Knowledge Distillation [15] method, a regularization-
based approach, we calculate a KL divergence [34] between the
output distributions of the previous model θt−1 and the cur-

Table 3: Test sets results (WER %) for the ablation study with
N randomly selected encoder layers for CLRL-tuning.

Method
Datasets D1 D2 D3 D4 Avg

CLRL-Tuning (N = 12)
(i.e.,Fine-tuning)

θ2 6.8 12.0 9.4
θ3 11.3 23.6 2.5 12.5
θ4 16.4 27.3 11.4 2.2 14.3

CLRL-Tuning (N = 6)
θ2 6.9 11.9 9.4
θ3 9.2 21.9 2.3 11.1
θ4 13.2 25.2 10.8 2.2 12.9

CLRL-Tuning (N = 3)
θ2 6.8 11.8 9.3
θ3 8.8 19.3 2.2 10.1
θ4 12.4 21.9 8.5 2.4 11.3

CLRL-Tuning (N = 1)
θ2 6.9 11.7 9.3
θ3 7.8 15.6 2.4 8.6
θ4 9.8 16.7 6.4 2.6 8.9

rent model θt as a regularization term to constrain parameters
shifting from the previous model θt−1. The regularization term
is summed with the CTC loss as the objective function for the
training of the current model θt.

4.2.2. Gradient Episodic Memory (GEM)

The Gradient Episodic Memory method [10] is a data-based ap-
proach. To update the gradients of the current model θt, we use
stored samples with a length of 30 minutes from the previous
dataset Dt−1, and select samples close to the median lengths of
utterance of the dataset Dt−1, that is an optimal set up for the
GEM method proposed in the study of [21].

4.2.3. Our Approach (CLRL-Tuning)

We apply our CLRL-Tuning approach with four settings: tuning
one (N = 1), three (N = 3), six (N = 6) and full (N = 12)
encoder layers and freeze the rest of them to continually train
wav2vec 2.0 on the datasets sequentially. As an ablation study
presented in Section 4.4, we compare the effect of the number
of encoder layers being tuned for the model.

4.3. Experimental Results

The results of Individual training, Fine-tune training, and Mit-
igating forgetting are summarized in Table 2. For a fair and
reasonable comparison, we use the average word error rate (Avg
WER) [8, 21] as the evaluation metric to compare our pro-
posed CLRL-Tuning approach with the baselines. We present
the optimal result for our approach, i.e., randomly tuning one
encoder layer (N = 1) of wav2vec 2.0 during each epoch.
Comparing the results of individual training and fine-tune train-
ing, we can see that continual training with direct fine-tuning
(i.e., tuning the full (N = 12) encoder layers of the wav2vec
2.0 model) causes catastrophic forgetting. Using our proposed
CLRL-Tuning approach can retain knowledge more effectively
than using the KD method and the GEM method.

We then use the validation sets of D1,D2,D3,D4 to plot the
continual learning curves of our proposed CLRL-Tuning ap-
proach and the baselines in Figure 2. The curves in four dif-
ferent colours represent the four methods used in our experi-
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Figure 2: Validation sets learning curves for the wav2vec 2.0
pre-trained model with the methods of Fine-tuning, KD, GEM
and our CLRL-Tuning (N = 1).

ments, and they are plotted in four windows to denote the four
training stages on Librispeech D1, Timit D2, Ljspeech D3, and
VCTK D4. At each training stage, the learning curves of the
Fine-tuning, the KD and the GEM methods (plotted in blue, red
and green in Figure 2, respectively) jump up when the model
is trained on the new dataset, while the learning curve of our
CLRL-Tuning (i.e., the black curve and N = 1) grows remark-
ably more gentle than theirs. The learning curves plotted in
Figure 2 also indicate that our method is more effective for mit-
igating catastrophic forgetting than the Fine-tuning, the KD and
the GEM methods, since the Fine-tuning method results in sig-
nificant deviation of the model parameters from the region of
the previous parameters (as demonstrated in Figure 1 (i)). Con-
versely, the KD and the GEM methods can mitigate this devia-
tion and alleviate catastrophic forgetting. (as shown in Figure 1
(ii)).

4.4. Ablation Study for CLRL-Tuning

In this section, we inspect the effect of the number of encoder
layers being tuned for the wav2vec 2.0 model on the datasets
D1,D2,D3,D4 sequentially. We attempt to tune one (N = 1),
three (N = 3), six (N = 6) and full (N = 12) encoder layers
(i.e., full encoder layers tuning is equivalent to the Fine-tuning
approach) of the model. Table 3 shows the less encoder layers
being tuned, the more effective for the model to alleviate catas-
trophic forgetting. Figure 3 shows the learning curves on the
validation sets of the datasets for the four training stages. We
can see that tuning less encoder layers of the model makes the
learning curves grow more gentle at each training stage. There-
fore, tuning one encoder layer (N = 1) of the model can most
effectively mitigate catastrophic forgetting.

The results for the ablation study show that a pre-trained
ASR model with good prior knowledge can efficiently learn
similar speeches patterns with only minor adjustments to its
parameters, since most parameters of the model are shareable
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Figure 3: Validation sets learning curves for the wav2vec 2.0
pre-trained model with CLRL-tuning of various number of en-
coder layers (N = 1, N = 3, N = 6, N = 12).

across all the datasets (as depicted in Figure 1 (iv)). Tuning one
encoder layer (N = 1) of the model results in minimal changes
to the parameter, while still leveraging the shared parameters
for good generalization across all datasets. However, tuning a
larger number of encoder layers (N = 3, N = 6, N = 12)
results in greater deviation of the model parameters from the
previous parameters, which causes catastrophic forgetting.

5. Conclusions and Future Work
In this paper, we propose a continual learning approach that
tunes partial encoder layers of a pre-trained ASR model for
effectively retaining the knowledge learned from previous
datasets. Experimental results show our approach can utilize
the prior knowledge of a pre-trained ASR model (i.e., trained
on large amount of unlabelled data) to alleviate the catastrophic
forgetting. Notably, our approach has neither memory restric-
tion, nor extra parameter tuning, nor privacy considerations
compared with previous approaches.

Future work will test CLRL-Tuning on larger wav2vec
2.0 models with more extensive unlabeled data, such as the
wav2vec 2.0 model pre-trained on the LirbiVox 60K dataset
[35], to examine whether larger networks and more unlabeled
data can further enhance the performance of our approach. Ad-
ditionally, we propose to investigate tuning more detailed sub-
layers of the pre-trained ASR models, such as recent advances
in speaker adaptation for the conformer transducer model [36].
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