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Abstract 

Binary-neural-network based keyword spotting (KWS) for 

resource-constrained devices has gained much attention in 

recent years. Although several works proved their success, a 

fully binary KWS system is yet to come, considering high-

precision speech feature maps are still required for satisfying 

accuracy. Such precision mismatch results in non-binary 

activation layers, thus leading to extra computational costs. In 

this paper, we present an extremely compact KWS system using 

a binary neural network and error-diffusion binarized speech 

features. The system eliminates all high-precision multi-

plications and requires only hardware-friendly bit-wise 

operations and additions for inference. Experiments on the 

Google speech commands show that our binary KWS system 

yields 98.54% accuracy on a 1-keyword task and 95.05% on a 

2-keyword task, outperforming 8-bit KWS systems of bigger 

size. The result proves the feasibility of a fully binary KWS 

system and can be inspiring for hardware implementations. 

Index Terms: Keyword spotting, binary neural network, error 

diffusion, convolutional neural networks 

1. Introduction 

Keyword spotting (KWS) is a critical component in low-power 

edge devices. Serving as an always-on audio switch to activate 

the whole system, it requires both low computation complexity 

and high accuracy. With remarkable progress in cognitive tasks, 

deep neural network (DNN) based approaches have become the 

major choice for building KWS systems[1]–[6]. In particular, 

convolutional neural networks (CNNs) are widely welcomed 

for high accuracy with less parameters[6]–[12]. Several novel 

network architectures such as DSCNN, TENet, TC-ResNet and 

MatchboxNet are proposed to further reduce computational cost 

for small-footprint KWS systems[13]–[16]. However, these 

networks are still too heavy for extreme low-power devices 

with limited computational and storage resources. 

Recently, low-precision network quantization methods, 

especially the binary neural networks (BNNs) gain much 

attention in small-footprint neural network studies[17]–[20]. 

KWS implementations are also influenced by these techniques 

[21]. Several KWS application specific integrated circuit (ASIC) 

systems achieve stunning power efficiency with the help of 

BNN architecture[22][23]. Nevertheless, all these studies still 

require high precision speech features to maintain satisfying 

accuracy. Take [23] as an example, the processing element (PE) 

arrays designed for its proposed NN accelerator have to use a 

set of gates and registers to support 8-bit computing mode, 

while 8-bit computations are only executed in the first network 

 
* Corresponding author 

layer. Such mismatch of precision between input features and 

network architecture results in extra resources and power, 

indicating there is still room for more compact KWS systems. 

Although high precision speech features can lead to extra 

computational and storage cost, few works focus on low-

precision speech representation approaches. Riviello and 

David[24] first proposed a log-Mel based linear quantizer that 

supports as low as 2 bits and shown insignificant accuracy loss 

on EdgeSpeechNet-A[25]. Cerutti et al.[26] proposed an MCU-

based KWS system using analog binary features, while it is a 

simple threshold method and the system still uses high precision 

weights for the last layer of the neural network. Our previous 

work [27] proposed an error-diffusion based quantization, 

demonstrated that the bit-width of practical quantization can be 

further reduced to 1 bit. The method achieves state-of-the-art 

performance on KWS among all quantization methods and can 

accommodate different small-footprint network architectures, 

while the satisfying results are based on full-precision networks. 

All the fore-mentioned works haven’t proved the feasibility of 

a fully binary KWS system which uses binary features and 

network with only binary activation and binary weights. 

In this study, binary speech feature is combined with a fully 

binary neural network to produce a small-footprint KWS 

system. The contributions of our work are three-fold. First, the 

error-diffusion based binarization algorithm is optimized by 

introducing bit-shift operations to reduce computational 

complexity, especially from a hardware perspective. Second, a 

binary KWS network based on TC-ResNet8[14] is proposed, 

named as TC-BiReal8, with improved shortcut module 

employed for better performance. Third, the experiment on 

Google speech commands shows that by combining two 

techniques, our system achieves an accuracy of 95.05% when 

performing a 2-keyword task and 98.54% for a 1-keyword task, 

delivering better performance with fewer memory and 17x less 

energy cost than 8-bit systems. The result demonstrates that a 

fully binary NN system can deliver satisfying performance in 

small-footprint KWS tasks and can be helpful for future 

extreme low-power hardware implementations. 

The rest of this paper is organized as follows: Section 2 

briefly introduces the proposed feature binarization method and 

TC-BiReal8 KWS network. Section 3 presents the settings and 

results of the experiments. Section 4 concludes this paper. 

2. Methods  

2.1. Error-diffusion based feature binarization 

The proposed binarization method is based on error-diffusion, 

which is a famous image processing algorithm for continuous 
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tone image quantization[28]. As the feature maps in CNN based 

KWS systems can be seen as images, image-based quantization 

methods can be used here and properly preserve the feature 

maps’ information. The essence of the algorithm is shown in 

Fig.1, which is diffusing the quantization error from 

thresholding one pixel to its neighbors and thus influencing the 

neighbors’ threshold operation. The algorithm starts from the 

top-left pixel of the image and runs firstly along the feature 

direction of feature maps and then along the time direction.  

The diffusion kernel for error-diffusion method can be 

different in terms of size and values from application to 

application. Essentially, they can be treated as infinite impulse 

response (IIR) filters with slight difference on frequency 

response. For the sake of computational complexity, a 2-row 

and 3-column kernel as shown in Figure 1 is applied in this 

study, with the neighbor pixel 𝑖 denoted as 0 to 3 influenced by 

pixel 𝑃. Figure 2 gives the commonly used coefficients for a 2-

row and 3-column kernel.  

 

Figure 1: Error-diffusion process. The quantization error of 

pixel 𝑃 will be diffusing to its neighbor pixels numbered  from 

0 to 3. 

 

 

Figure 2: Three 2-row-3-column Error-diffusion kernels. The 

quantization error will be multiplied by the coefficients at 

corresponding positions of the kernel before diffusion. 

Table 1: Bit-shift numbers for different kernels. 

Kernel 𝑘 

Position 𝒊 
a b c 

0 𝑏0 = 1 
𝑏0 = 2 

𝑏1 = 3 

𝑏0 = 2 

𝑏1 = 3 

𝑏2 = 4 

1 𝑏0 = 2 - 
𝑏0 = 3 

𝑏1 = 4 

2 𝑏0 = 2 
𝑏0 = 2 

𝑏1 = 3 

𝑏0 = 2 

𝑏1 = 4 

3 - 𝑏0 = 2 𝑏0 = 4 

 

Based on the fact that 8-bit feature is the common choice in 

state-of-the-art KWS ASIC implementations[22][23], this 

paper chooses the signed 8-bit fixed-point log-Mel (filter-banks) 

spectrogram as the quantization basis. Moreover, with signed 

fixed-point features, we can dramatically reduce the 

computational complexity of the error-diffusion binarization 

process from a hardware perspective. Noted that all the 

coefficients mentioned above are sums of different powers of 2, 

thus the computation results can be acquired by addition and 

bit-shift operations without multiplications. Assuming the 

quantization error is 𝑒, the diffusing error for neighbor position 

𝑖 is ℎ𝑖, the 𝑛th bit-shift number of kernel 𝑘 in position 𝑖 is 𝑏𝑖𝑘
𝑛 , 

and the array which stores 𝑁𝑘 number of bits required for bit-

shifting with kernel 𝑘 is 𝐵𝑘, then we can derive that: 

ℎ𝑖 = ∑ (𝑒 ≫ 𝑏𝑖𝑘
𝑛 )

𝑁𝑘

𝑛=1
, 𝑏𝑖𝑘

𝑛 ∈ 𝐵𝑘 (1) 

where Array 𝐵𝑘 is summarized in Table 1. 

By using bit-shift operations, the proposed approach helps 

eliminate the multipliers in hardware and ultimately reduce 

computation cycles and extra-word-length registers required by 

multipliers. With adjustments mentioned above, the details of 

the error-diffusion binarization algorithm is summarized in 

Algorithm 1, operator ≫ refers to right-shifting. 

Algorithm 1: Error-diffusion Based Feature Binarization 

Input: 𝑃𝑖𝑛(𝑖, 𝑗) ∈ [−128,127] is the signed 8-bit input 

feature map value. F is the number of filter banks of feature 

maps while T is the number of time bins.  

Output: 𝑃𝑜𝑢𝑡(𝑖, 𝑗) is the binary quantization value of 

feature maps. 

1 𝐟𝐨𝐫 𝑖 ← 1 to 𝑇 𝐝𝐨 

2     𝐟𝐨𝐫 𝑗 ← 1 to 𝐹 𝐝𝐨  
3         𝑃𝑜𝑢𝑡(𝑖, 𝑗) ← 𝑃𝑖𝑛(𝑖, 𝑗) ≫ 7 

4         𝑒 ← 𝑃𝑖𝑛(𝑖, 𝑗) & 0𝑥7𝐹 

5         𝐢𝐟 (𝑗 < 𝐹) 𝐭𝐡𝐞𝐧 

6             𝑃𝑖𝑛(𝑖, 𝑗 + 1) ← 𝑃𝑖𝑛(𝑖, 𝑗 + 1) + ∑ 𝑒 ≫
𝑁𝑘
𝑛=1

𝑏0𝑘
𝑛  

7         𝐞𝐧𝐝 𝐢𝐟 

8         𝐢𝐟 (𝑖 < 𝑇) 𝑎𝑛𝑑 (𝑗 > 1) 𝐭𝐡𝐞𝐧 

9             𝑃𝑖𝑛(𝑖 + 1, 𝑗 − 1) ← 𝑃𝑖𝑛(𝑖 + 1, 𝑗 − 1) +

∑ 𝑒 ≫ 𝑏1𝑘
𝑛𝑁𝑘

𝑛=1  

10         𝐞𝐧𝐝 𝐢𝐟 

11         𝐢𝐟 (𝑖 < 𝑇) 𝐭𝐡𝐞𝐧 

12             𝑃𝑖𝑛(𝑖 + 1, 𝑗) ← 𝑃𝑖𝑛(𝑖 + 1, 𝑗) + ∑ 𝑒 ≫
𝑁𝑘
𝑛=1

𝑏2𝑘
𝑛  

13         𝐞𝐧𝐝 𝐢𝐟 

14         𝐢𝐟 (𝑖 < 𝑇) 𝑎𝑛𝑑 (𝑗 < 𝐹) 𝐭𝐡𝐞𝐧 

15              𝑃𝑖𝑛(𝑖 + 1, 𝑗 + 1) ← 𝑃𝑖𝑛(𝑖 + 1, 𝑗 + 1) +

∑ 𝑒 ≫ 𝑏3𝑘
𝑛𝑁𝑘

𝑛=1  

16         𝐞𝐧𝐝 𝐢𝐟 

17     𝐞𝐧𝐝 𝐟𝐨𝐫 

18 𝐞𝐧𝐝 𝐟𝐨𝐫 

2.2. TC-BiReal8 binary neural network 

We select TC-ResNet8 as our base network for binarization, 

considering it is a classic architecture that utilizes temporal 

convolution to achieve large receptive field for audio features 

and low computation complexity[15]. 

The basic topology of TC-ResNet8, including a basic 

convolution layer, 3 convolution blocks, an average pooling 

𝑷 0 

1 2 3 
T 

F 

 2/4 

1/4 1/4 0 

(a) (b) 

 3/8 

0 3/8 2/8 

 7/16 

3/16 5/16 1/16 

(c) 
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layer and a fully connected layer, is retained in TC-BiReal8 

except the activation and weights are binary now. However, we 

discover that a direct binarization of the network will suffer 

significant accuracy drop due to the low precision activation in 

shortcut convolutions. To mitigate the problem, a series of 

optimization enlightened by previous studies on BNN 

architectures[19][20] are introduced to the network. Firstly, this 

work transforms the original single shortcut connection to two 

shortcut connections in the temporal convolution block. 

Besides, an improved shortcut block, where feature maps of an 

2x1 pooling layer and a 1-bit 1x1 convolution layer are 

concatenated on the channel dimension, is introduced to the 

convolution block to better preserve the representational 

capability of the down-sampling residual path. The adjusted 

convolution block is shown in Figure 3, and the topology of TC-

BiReal8 is shown in Figure 4. By doing so, the proposed fully 

binary neural network can still deliver high performance under 

extreme compact size. 

 

Figure 3: Convolution block of TC-BiReal8. For the down-

sampling phase, the shortcut is concatenated by the average-

pooled input and feature maps output by 1x1 convolution block. 

Other than the convolution block optimization, we follow 

classic approaches of NN binarization techniques applied in the 

training stage to get a better KWS accuracy. Specifically, We 

use scaled weights proposed in [18] and 𝐴𝑝𝑝𝑟𝑜𝑥𝑆𝑖𝑔𝑛 function 

proposed in [19] for activation with closer approximation of the 

non-differentiable 𝑆𝑖𝑔𝑛 function. 

3. Experiments 

3.1. Implementation details 

3.1.1. Dataset and experiment setting 

Google Speech Commands Dataset v1[29] is selected to 

conduct our following KWS experiments. The data set includes 

30 target categories and contains 65k one-second-long 

utterances from 1881 speakers.  

Our experiments are targeted on a 2-keyword task (“happy” 

and “stop”) and a 1-keyword task (“happy”) both with 2 extra 

classes (“silence” and “unknown”) to simulate small-footprint 

KWS applications. The data set is split into training, validation, 

and test sets, with 80% training, 10% validation, and 10% test, 

respectively. To examine the performance, accuracy is used as 

the main metric.  

Besides of the full-precision TC-ResNet8 and the binary 

TC-BiReal8, we also implement several baseline systems for 

comparison. A naïve binarized TC-ResNet8, denoted as TC-

BiResNet8 for which we intuitively transform the convolution 

and fully-connected layers to binary ones without any topology 

changes, is used to validate the effectiveness of TC-BiReal8. 

Furthermore, two 8-bit DSCNNs which are about the similar 

memory consumption level of TC-BiReal8 are involved to 

evaluate our fully binary KWS system. The architecture of 

DSCNN is adopted from [13] but implemented with much 

shallower layers, including a basic 4x10 convolution layer, a 

3x3 Depth-wise convolution layer, a 1x1 Point-wise 

convolution layer and a full connect layer, to match the memory 

difference. 

3.1.2. Data augmentation and preprocessing 

Following Google’s preprocessing procedures, random shift 

and noise addition are applied as data augmentations to the 

training data. First, the background noises provided by the data 

set are sampled and added to the speech audio with a  random 

proportion following a uniform distribution U (0, 0.1). Then the 

signal is time shifted by t seconds and zero-padded to 1 second, 

where t is sampled from U (−0.1, 0.1). 

For raw feature extraction, 40 Mel filters are applied with a 

30ms window size and a 10ms frame shift to generate feature 

maps with a size of 98x40, such setting can be seen in many 

small-footprint KWS applications[14]–[16]. For the simplicity 

of the experiments, the feature is min-max quantized to signed 

8-bit fixed-point values before binarization. 

3.1.3. Training Strategy 

All the networks mentioned above are trained and evaluated in 

the experiments upon the PyTorch platform, with every model 

trained for 50 epochs with a batch size of 100, while the detailed 

training procedures are different. For TC-ResNet8 and 

DSCNNs, we follow the best-performing training hyper 

parameters and strategies listed in the original work except 

quantization-aware-training[30] is used for DSCNNs. For TC-

BiReal8 and TC-BiResNet8, on the other hand, we use same 

training strategy, where Adam optimizer with a linear rate 

decay scheduler and an initial learning rate of 1e-2 is applied, 

and the weight decay is set to 5e-6 as suggested in [31]. All of 

the networks use cross-entropy loss for loss function.  

3.2. Experimental results 

3.2.1. Error-diffusion kernel 

To start with, we conduct an experiment to investigate the 

difference among kernels mentioned in Section 2.1. This 

experiment targets on the two-keyword task and uses the full-

precision model for fast evaluation. The result is summarized in 

Table 2. 

Experiment shows that the best performing kernel (c) 

achieves an accuracy of 98.70%, only 0.18% lower than the 8-

                 

        

             

                 

        

             

        

           

        

           

                 

        

                   

          

Figure 4: Topology of TC-BiReal8. 
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bit feature with 61K bit-wise OPs for error diffusion. Even 

kernel (a) achieves 98.19% accuracy with only 23K OPs. The 

result shows that binary representation only leads to an 

accuracy drop up to 0.69%. Besides, it also demonstrates that 

the accuracy difference on KWS among the kernels is no larger 

than 0.6%, indicating the choice of kernel has no significant 

influence on the performance of small-footprint KWS. 

Moreover, results show that the most complex kernel (c) will 

bring 2.03% extra OPs overhead. Even though the extra costs 

of all three kernels are quite small compared to the 3M OPs of 

network computation, the 0.77% OPs overhead of kernel (a) is 

clearly more attractive considering the little difference in KWS 

performance. Therefore, to make the best use of the 

computational cost advantage, we use kernel (a) for feature 

binarization in the rest of experiments. 

Table 2: Performance and bit-wise operations (OPs) 

for Error Diffusion of different kernels. 

Quantization 

method 
Acc. (%) 

Bit-wise OPs for 

Error Diffusion 

Extra OPs 

Overhead* 

8-bit log-mel 98.88 - - 

1-bit with 

Kernel (a) 
98.19 23K 0.77% 

1-bit with 

Kernel (b) 
98.24 38K 1.26% 

1-bit with 

Kernel (c) 
98.70 61K 2.03% 

*The overhead computation here ignores the complexity 

difference between bit-wise OPs and float OPs. 

3.2.2. TC-BiReal8 

To investigate the performance of TC-BiReal8, we conduct 

both the 1-keyword and 2-keyword experiment on the proposed 

TC-BiReal8 and naïve TC-BiResNet8 with compared to the 

full-precision TC-ResNet8. The results are shown in Table 3 

and Table 4.  

Table 3: Performance of TC-BiReal8 on 1-keyword 

task. 

Network Feature  Mem. Speedup Acc. (%) 

TC-ResNet8 8-bit 264KB 1× 99.02 

TC-BiResNet8 1-bit 8.2KB ~64× 96.25 

TC-BiReal8 1-bit 7.7KB ~64× 98.54 

Table 4: Performance of TC-BiReal8 on 2-keyword 

task. 

Network Feature   Mem. Speedup Acc.(%) 

TC-ResNet8 8-bit 264KB 1× 98.88 

TC-BiResNet8 1-bit 8.2KB ~64× 91.63 

TC-BiReal8 1-bit 7.7KB ~64× 95.05 

As the results show, TC-BiReal8 achieves 98.54% accuracy 

on the 1-keyword task and 95.05% on the 2-keyword task, 

which are both significant higher accuracy over the naïve 

binarized TC-BiResNet8 with a cost of slightly more additions 

but less parameters. Besides, the proposed fully binary system 

achieves insignificant accuracy drop as compared with the full-

precision network on the 1-keyword task, while leads to 3.83% 

accuracy drop on the more complex 2-keyword task. 

Nevertheless, the binary system will save 32 times of storage 

and deliver at least 64 times of speedup over the full-precision 

one[32]. 

3.2.3. Comparison with 8-bit systems 

To further validate the effectiveness of the fully binary system, 

TC-BiReal8 and two 8-bit DSCNN systems are examined on 

two KWS tasks. Table 5 and Table 6 give a brief summary of 

the results, where DSCNN-s refers to the DSCNN with 8 

channels, and DSCNN-m refers to the one with 16 channels.  

Table 5: Comparison on 1-keyword task. 

Network Feature  
Total 

Mem. 

Norm. 

Energy 

Saving 

Acc. (%) 

DSCNN-m 8-bit 16KB 1× 98.24 

DSCNN-s 8-bit 10KB 2× 97.99 

TC-BiReal8 1-bit 8KB 17.1× 98.54 

Table 6: Comparison on 2-keyword task. 

Network Feature  
Total 

Mem. 

Norm. 

Energy 

Saving 

Acc. (%) 

DSCNN-m 8-bit 20KB 1× 93.07 

DSCNN-s 8-bit 12KB 2× 90.56 

TC-BiReal8 1-bit 8KB 17.2× 95.05 

The experiment results demonstrate that our TC-BiReal8, 

using 1-bit feature, has a clear advantage over both the 8-bit 

systems on every perspective. The fully binary system 

surpasses DSCNN-s by 4.49% at most in 2-keyword task while 

consumes less total memory which includes the model size and 

feature storage. Besides, according to [33], the relative 

normalized energy cost ratio for operations of different bits can 

be estimated with approximated factors. Taking the energy cost 

for 8-bit multiplication and 8-bit addition are about 56 times 

and 8 times of energy cost for 1-bit operation, respectively, the 

binary system can achieve over 17 times of normalized energy 

saving compared to the 16-channel DSCNN-m. 

4. Conclusions 

In this paper, we aim to explore the potential of a fully binary 

KWS system with binary input features and a binary neural 

network for hardware friendly implementations. Error-

diffusion feature binarization is employed and further 

optimized by replacing the multiplications with bit-shift 

operations. We also propose a binary neural network 

architecture named as TC-BiReal8, for which an improved 

shortcut technique is introduced to enhance the representation 

capacity of binary convolution blocks. Experiments demon-

strate that by combining two techniques, our system achieves 

98.54% accuracy for a 1-keywork task  accuracy on Google 

speech commands v1, and 95.05% for a 2-keyword task. The 

binary system presents better performance than the 8-bit system 

of similar or slight bigger size. The results prove the feasibility 

of a fully binary KWS implementation and will be inspiring for 

extreme resource-limited devices and ultra-low-power ASIC 

deployment. 
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