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Abstract
Adaptation of end-to-end (E2E) automatic speech recogni-
tion (ASR) models to unseen domains remains a challenge
due to their monolithic construction, which typically neces-
sitates paired data for customization. While neural text-to-
speech (TTS) approaches have shown effectiveness for domain
adaptation, they come with the drawback of high computational
costs during training and inference. In this paper, we propose
a model-free audio synthesis pipeline for domain adaptation,
which synthesizes audio with text from the target domain and
audio pieces from the source domain, allowing ASR models to
be adapted with the on-the-fly synthesized audio. Additionally,
we apply layer-wise regularization between speech encodings
generated by adapted and unadapted models to prevent overfit-
ting. Our experiments adapt from LIBRISPEECH to various do-
mains in GIGASPEECH. The results show a 15-30% relative im-
provement in target domains compared to shallow fusion, with
almost no degradation in the source domain.
Index Terms: end-to-end speech recognition, domain adapta-
tion, text to speech, splicing data generation

1. Introduction
The field of automatic speech recognition (ASR) has witnessed
significant progress with the emergence of end-to-end (E2E)
models, which offer a unified and jointly optimized architec-
ture for ASR tasks [1, 2]. In contrast, traditional hybrid sys-
tems require multiple separately optimized models, including
an acoustic model, a language model (LM), and a pronunciation
model [3, 4]. This leads to a complicated pipeline during both
training and inference. Despite these advantages, customizing
E2E models to new domains remains a challenging task.

Domain adaptation is a crucial topic in ASR that aims to
adapt well-trained ASR systems to new domains [5–8]. Recent
research has focused on domain adaptation using unpaired text
data, which is more practical to collect than speech-text paired
data. Modularized hybrid systems can leverage text-only data
for customization, whereas E2E models require paired data for
training and have limited capacity to exploit unpaired text data.
Nonetheless, researchers have recently developed several ap-
proaches to address this shortcoming and utilize unpaired text
data to customize E2E models.

LM shallow fusion [9] is a commonly adopted approach for
domain adaptation where an LM is trained with large text cor-
pora from the target domain and fused with E2E models through
score interpolation during inference. Nevertheless, LM fusion
based methods often achieve promising results on the target do-
main at the cost of severe degradation on the source domain.
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Another straightforward solution is to synthesize speech
from texts in the target domain with text-to-speech (TTS) tech-
niques [10–17]. In [10], a multi-speaker neural TTS model
is trained to synthesize speech using the unpaired text data to
adapt the RNN-T model to the target domain. [11] compares the
different neural TTS models, showing that the diversity of gen-
erated speech is crucial for ASR model customization. [13] ex-
plores the machine speech chain [12] framework to adapt both
TTS and ASR models from the audiobook domain to the pre-
sentation domain alternately. [14, 15] improve the recognition
accuracy of out-of-vocabulary (OOV) words by training with
audio generated from text data containing OOV words. Despite
the promising results achieved by exploiting neural TTS mod-
els for the customization of ASR models, neural TTS models
are computationally expensive during both training and speech
generation. Moreover, the speaker variation of generated speech
is limited compared with real training data for ASR [18].

To resolve the drawbacks of neural TTS approaches
for domain adaptation, [19] proposes splicing data genera-
tion (SDG) that concatenates the sampled speech segments cor-
responding to words in target texts into new utterances. Al-
though the spliced speech suffers from apparent disfluency,
the adapted ASR model shows promising improvement on the
target domain. In this work, we elaborate the word guided
SDG (Word SDG) pipeline in [19] and propose phoneme guided
SDG (Phoneme SDG). Instead of using word-level speech seg-
ments as in [19], we adopt speech segments guided by phoneme
n-grams where n is dynamically determined by a greedy algo-
rithm that minimizes the number of splicing fragments for tar-
get texts. The proposed Phoneme SDG scheme improves Word
SDG in several aspects: (1) The generated speech includes real
word connections or liaison which is absent in Word SDG. (2)
Fluency is improved by minimizing the number of speech seg-
ments in generated speech. (3) The diversity of speech seg-
ments is enriched since the number of phoneme n-grams is
much richer than words. Besides, during adaptation of ASR
models, encoder freezing strategy is often adopted to prevent
overfitting on synthesized data [14, 19]. However, such a strat-
egy reduces the number of trainable parameters and might cause
negative impacts to the adaptation results. To avoid the draw-
backs of encoder freezing, a regularization term that is similar
to [20] is introduced in a layer-wise manner. We validate the
effectiveness of the proposed methods with the attention based
encoder-decoder (AED) ASR architecture [21, 22].

Our contributions can be summarized as follows: (1) we
propose a splicing data generation pipeline that enables the
adaptation of well-trained ASR models on on-the-fly synthe-
sized speech. (2) Performance of ASR model adapted with
spliced speech surpasses neural TTS synthesized speech in
terms of WER on the target domain. (3) We introduce a layer-
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Figure 1: Proposed splicing data generation pipeline guided by n-grame phonemes: p1, p2, · · · are phonemes derived from original
word sequences by querying lexicon, \b indicates word boundary. The dashed line means disassembling target domain phoneme
sequences requires querying phoneme n-gram dictionary.

wise regularization term during ASR model adaptation that
shows better results on both the source domain and target do-
mains than the widely adopted encoder freezing strategy. (4) We
setup a benchmark for domain adaptation from LIBRISPEECH
to multiple domains of GIGASPEECH. The effectiveness of our
proposed methods is further demonstrated on this benchmark.

2. Methodology
In order to address disfluency and enhance the diversity of
synthesized speech generated by Word SDG, we propose a
Phoneme SDG pipeline. To prevent overfitting on synthesized
speech, we introduce a layer-wise distance regularization tech-
nique between speech encodings produced by the adapted and
unadapted models. In this section, we provide a detailed expla-
nation of these methods.

2.1. Phoneme Guided Splicing Data Generation
The Phoneme SDG pipeline requires the construction of a
phoneme n-gram dictionary, which is effectively a mapping
from phoneme n-grams to their corresponding speech segments
in source domain training data. In this work, we build the dic-
tionary with 3 ≤ n ≤ 10 by processing the forced alignment
results. The dictionary is denoted as P and the set of its keys
is denoted as S. As shown in Fig. 1, the proposed pipeline is
accomplished with 3 stages.

2.1.1. grapheme to phoneme (g2p)

In this stage, word sequences in target texts are converted to
phoneme sequences by querying the word lexicon. For words
with multiple entries in the lexicon (i.e. heteronyms), we ran-
domly select one of the entries during each synthesis. Word
boundaries are preserved and marked as \b for subsequent si-
lence insertion. The outcome phoneme sequence after g2p is
illustrated in lilac in Fig. 1.

2.1.2. disassemble into phoneme n-grams

In the forced alignment results of real speech data, there exists
occasional silence between words and constant silence at both
ends of all utterances. To imitate real speech data, we also ap-
pend silence at both ends of the phoneme sequences. Besides,
word boundaries are randomly removed or replaced with silence
according to the statistics in the forced alignment results. The
resulting phoneme sequence after random silence insertion is
illustrated in orange in Fig. 1.

Then we search the dictionary P to find phoneme n-grams
with maximized averaged length (i.e. minimized number of
phoneme n-grams) that assemble to a phoneme sequence. This

is achieved with a greedy algorithm demonstrated in Algo-
rithm 1 that operates in a divide-and-conquer manner. Note that
the symbol × in line 13 denotes Cartesian Product. It can be
proved by mathematical induction that Algorithm 1 always re-
turns sequences comprised of a minimum number of phoneme
n-grams if such a sequence exists, which well preserves the flu-
ency of synthesized audio. We randomly take 10 disassembled
sequences if more are returned and discard the input sequences
that cannot be disassembled with such a procedure.

2.1.3. audio synthesis

Finally, we convert phoneme n-grams into actual speech seg-
ments by randomly selecting one of the speech segments corre-
sponding to each phoneme n-gram from the dictionary P. The
speech segments are then concatenated into complete speech.

An example that converts a target domain text to a phoneme
n-gram sequence is demonstrated in Table 1. Note that the liai-
son in the target text ‘SWIM AGAIN’ is reflected in the high-
lighted part of disassembled phoneme n-grams. The number of
tokens is reduced from 7 (i.e. number of words in Word SDG)
to 5, which also improves fluency.

Algorithm 1 Disassemble a phoneme sequence into n-grams
Input: x, the phoneme sequence
Output: y, the list of disassembled n-gram sequences
Require: S, the set of all phoneme n-grams in the dictionary P
Require: nmin, nmax, nmin ≤ n ≤ nmax for S

1: function DISASSEMBLE-SEQUENCE(x)
2: if length(x) = 0 then
3: return []
4: y← []
5: for n← nmax to nmin do
6: for i← 0 to length(x)− n do
7: t← x[i : i+ n]
8: if t ∈ S then
9: ypre← DISASSEMBLE-SEQUENCE(x[0 : i])

10: ypost← DISASSEMBLE-SEQUENCE(x[i+ n :])
11: if ypre is ∅ or ypost is ∅ then
12: continue
13: y.Append( ypre × [t] × ypost )
14: if length(y) ̸= 0 then
15: return y

16: return ∅

2.2. Layer-wise Encoding Distance Regularization (LEDR)

It has been shown in previous works that encoder freezing is
an effective approach to prevent the model from overfitting on
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Table 1: Phoneme SDG pipeline demonstrated with text from
utterance YOU0000001275 S0000060 in GIGASPEECH

target UM LIKE GREAT I’LL NEVER SWIM
text AGAIN

AH1 M \b L AY1 K \b G R EY1 T \b AY1
g2p L \b N EH1 V ER0 \b S W IH1 M \b AH0 G

EH1 N

insert SIL AH1 M L AY1 K SIL G R EY1 T AY1 L
silence N EH1 V ER0 S W IH1 M AH0 G EH1 N SIL

dis- (SIL AH1 M L AY1 K), (SIL G R EY1 T),
assemble (AY1 L N EH1 V ER0), (S W IH1), (M AH0 G

EH1 N SIL)

synthesized data [14, 19]. However, due to the reduced train-
able parameters, adapting a well-trained model with a frozen
encoder to new domains can be more challenging.

In this work, instead of freezing the encoders, we incorpo-
rate a regularization term into the ASR loss that is similar to [20]
for each real speech sample x. The regularization term penal-
izes L1 and cosine distance between the normalized real speech
encodings produced by adapted model ϕl(x) and unadapted
model ϕ′

l(x) at layer l. Different from [20] where speech encod-
ings come from clean-noisy speech pairs encoded by the same
model, the speech encodings in Eq (1) are produced by adapted
and unadapted models using the same real speech input:

Ld

(
x; θ, θ′

)
=

L∑

l=1

(∥∥ϕl(x)− ϕ′
l(x)

∥∥

+
ϕl(x) · ϕ′

l(x)

∥ϕl(x)∥ · ∥ϕ′
l(x)∥

) (1)

where L is the total number of encoder layers, θ and θ′ are
parameters of adapted and unadapted models, respectively.

We adopt the joint CTC/attention training framework [22],
where the multi-task learning based ASR loss is denoted as
Ljoint. The final loss is formulated as:

L =

{
Ljoint(x; θ) + αLd(x; θ, θ

′), if x is real speech
Ljoint(x; θ), if x is synthetic speech

(2)

where α is the weight of the regularization term.

3. Experiments
3.1. Experiment Setup
3.1.1. Data

We conduct experiments by adapting the ASR model trained
on LIBRISPEECH [23] to a variety of domains in GI-
GASPEECH [24]. GIGASPEECH is a recently published ASR
corpus comprised of 10,000 hours of transcribed speech. In this
work, we use the YouTube partition of GIGASPEECH XL sub-
set. 4 different domains with a comparable amount of data are
selected as target domains. 5 hours development set and 10
hours test set are split from training data as shown in Table 2.
For all experiments except the upper bound, only text data in
target domains are used for audio synthesis and model training.
The phoneme n-gram dictionary P in Section 2.1 is constructed
with the forced alignment results obtained from a Chain Time
Delayed Neural Network (TDNN) model [25, 26].

Table 2: Duration of GIGASPEECH target domains (hours)

domain train dev test

Science 313.93 5.73 9.30
News 358.78 5.90 9.29
People 383.78 4.27 10.87
Entertainment 284.64 4.71 10.31

3.1.2. ASR Model

The source domain ASR model is trained on the full 960 hours
of LIBRISPEECH data. We adopt 12 layers of Conformer speech
encoder [27] and 6 layers of Transformer decoder with 2048
hidden units. Each layer is equipped with 8 heads of 64 dimen-
sion self-attention layer [28]. The kernel size for convolution
modules is 31. For joint-CTC-attention training, the weight
for CTC and attention is set to 0.3 and 0.7 empirically. The
weight α in Eq (2) is set to 150 for most experiments and we
also investigate the impact of α in Section 3.2.3. We use an
80-dimensional log Mel-filterbank with a 25ms window length
computed every 10ms as inputs of the speech encoder. Spec-
augment [29] is applied for all experiments. During adapta-
tion, the model is trained on the real speech from the source
domain and synthetic speech generated from texts in the target
domain alternately for each batch. Encoders are frozen during
adaptation unless LEDR is applied. The Adam [30] optimizer
is adopted with 0.001 initial learning rate and 20,000 warmup
steps. We also adopt the joint-CTC-attention decoding strat-
egy [31]. The weight for CTC and attention during inference
is set to 0.2 and 0.8, which was tuned to achieve the best de-
coding results on LIBRISPEECH development sets. The num-
ber of modeling units (BPE) for text sequence in the decoder is
10,000 [32]. The LM applied in shallow fusion are Transformer
LMs trained on corresponding texts in target domains following
official ESPnet setup1. The source domain model was trained
for 150 epochs and fine-tuned for 70 epochs on each target do-
main. Experiments are carried out with ESPnet toolkit [33]

3.1.3. Neural TTS Model

We adopt a single-speaker and multi-speaker neural TTS sys-
tems for comparison. Both systems are comprised of a Fast-
Speech2 [34] acoustic encoder and a HiFi-GAN vocoder [35].
The single and multi-speaker TTS systems are pretrained with
LJSPEECH [36] and LIBRITTS [37], respectively. We follow
the ESPnet pipeline2, where models and details regarding audio
synthesis can be found.

3.2. Experiment Results and analysis
The performance for different system setups is shown in Ta-
ble 3. In the first line, the unadapted model trained on LIB-
RISPEECH is tested on 4 target domains of GIGASPEECH. The
last line shows the upper bound performance on target domains
by training ASR models with paired target domain data. Al-
though shallow fusion yields promising improvement on target
domains by incorporating an external LM, adapting the ASR
model on synthesized speech-text pairs achieves better perfor-
mance. Besides, by training on a mixture of source domain
real speech and target domain synthesized speech, performance
degradation on the source domain can be restrained.

1https://zenodo.org/record/3966501/
2https://colab.research.google.com/github/

espnet/notebook/blob/master/espnet2_tts_
realtime_demo.ipynb
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Table 3: WER (%) comparison of different setups. The left results in each column show WERs on LIBRISPEECH test clean / test other
sets. The right results in each column show WERs on GIGASPEECH dev / test sets for the corresponding domain.

Method Libri→ Giga Science Libri→ Giga News Libri→ Giga People Libri→ Giga Entertainment
clean / other dev / test clean / other dev / test clean / other dev / test clean / other dev / test

1. Unadapted Model 2.5 / 5.4 17.1 / 19.0 2.5 / 5.4 18.1 / 16.8 2.5 / 5.4 23.3 / 17.7 2.5 / 5.4 24.1 / 24.1
2. + SF 2.9 / 6.5 15.3 / 16.4 2.9 / 6.4 16.0 / 14.8 3.0 / 6.3 21.6 / 16.2 3.0 / 6.2 23.3 / 22.9
3. Multi-spkr neural TTS 2.6 / 5.9 11.6 / 12.9 2.6 / 5.9 13.9 / 12.3 2.6 / 5.7 17.4 / 13.4 2.9 / 5.9 20.2 / 20.7
4. Single-spkr neural TTS 2.7 / 5.7 12.2 / 13.3 2.7 / 5.7 14.1 / 12.4 2.6 / 5.6 18.2 / 13.7 2.8 / 5.7 20.4 / 20.8
5. Word SDG 2.5 / 5.6 12.6 / 14.0 2.6 / 5.9 14.1 / 12.8 2.6 / 5.5 19.7 / 14.7 2.4 / 5.6 21.5 / 21.6
6. Phoneme SDG 2.5 / 5.8 11.4 / 12.1 2.6 / 5.6 13.5 / 11.9 2.6 / 5.6 17.8 / 13.4 2.4 / 5.5 20.7 / 20.6
7. + LEDR 2.5 / 5.6 10.8 / 11.7 2.5 / 5.6 12.9 / 11.6 2.5 / 5.5 17.5 / 13.2 2.4 / 5.4 19.6 / 19.4
8. ++ SF 2.8 / 6.2 10.6 / 11.4 2.8 / 6.2 12.6 / 11.3 2.8 / 6.0 17.2 / 13.1 2.6 / 5.9 19.6 / 19.3
9. Upper bound - 7.6 / 7.7 - 8.8 / 7.3 - 11.4 / 8.5 - 13.6 / 13.7

Comparing the third and fourth rows, adapting models on
multi-speaker TTS data constantly yields better results than on
single-speaker TTS data, showing that speaker diversity plays
an important role in neural TTS based text-only domain adapta-
tion. Although the quality of synthesized speech can be slightly
worse for multi-speaker TTS than single-speaker TTS, the syn-
thesized speech is richer in speaker diversity, which prevents the
adapted model from overfitting to a single speaker.
3.2.1. splicing data generation

We compared the proposed Phoneme SDG with Word SDG. In
our experiments, Word SDG does not surpass neural TTS ap-
proaches, which is inconsistent with the results in [19]. We as-
sume that this is caused by the reduction of source domain data
from 65,000 hours in [19] to 960 hours in LIBRISPEECH, lead-
ing to a significantly degraded diversity of word guided speech
segments. This defect is mitigated in the proposed Phoneme
SDG pipeline since phoneme n-grams are significantly richer
than words. Besides, the proposed pipeline also enables dif-
ferent ways of disassembling target texts into phoneme n-
grams rather than always disassembling them into underlying
words. Compared to Word SDG, results on Phoneme SDG
show consistent improvement on target domains. Moreover,
most adapted models with Phoneme SDG yield better results
on the source domain than neural TTS approaches, and show
similar or even better performance (i.e. Libri → Giga Enter-
tainment) on the source domain than unadapted models. We
attribute this to the fact that synthesized speech from SDG is
comprised of speech segments from the source domain, and that
SDG approaches significantly increase the diversity of training
data with on-the-fly data generation.
3.2.2. layer-wise encoding distance regularization

The seventh row shows the results by replacing the encoder
freezing strategy with the layer-wise regularization term in
Eq (1). The overall performance is improved on both the source
domain and target domains since the number of trainable pa-
rameters is increased by unfreezing the encoder and the overfit-
ting problem can be prevented with the regularization term.

Models adapted with the proposed methods achieve the
largest relative improvement compared to unadapted models
on GIGASPEECH Science dev / test sets (i.e. 36.3% / 40.0%),
which can probably be ascribed to the large domain bias of text
data in the science domain. The smallest relative improvement
is achieved on Entertainment dev / test sets (i.e. 18.7% / 19.9%),
which can be explained by the shortage of text data in Entertain-
ment domain compared with other domains.

We further validate the compatibility of the proposed meth-
ods with shallow fusion. Results show that the performance on
target domains can be further improved with LM shallow fusion
by sacrificing recognition accuracy on the source domain.

3.2.3. Investigation on weight of regularization term

Table 4: WER (%) comparison of different weights α in pro-
posed layer-wise encoding distance regularization

Method α
Librispeech Giga Science

clean other dev test

50 2.7 6.0 12.3 12.8
Phoneme SDG 150 2.5 5.6 10.8 11.7
+ LEDR 300 2.5 5.7 10.9 11.7

500 2.5 5.7 11.2 11.8

In the last experiments, we investigate the impact of the
weight α of the regularization term in Eq (2) and the results are
shown in Table 4. When α is small (α = 50), the regulariza-
tion is too weak to prevent the adapted model from overfitting to
synthesized speech. We achieve the best results by increasing
α to 150. As α becomes larger (α = 300, 500), the regular-
ization term is more likely to freeze the encoder and the results
become closer to the sixth row of Table 2 which adopts the en-
coder freezing strategy.

4. Conclusions

This paper introduces a novel approach for text-only do-
main adaptation that utilizes data splicing pipeline guided by
phoneme n-grams to generate speech from texts in target do-
mains. Due to the model-free nature of the proposed pipeline, it
has negligible computational cost compared to neural TTS ap-
proaches, allowing the ASR model to be trained with on-the-fly
synthesized speech. Moreover, a layer-wise regularization term
is introduced to prevent the ASR model from overfitting to syn-
thesized speech. We validate the effectiveness of the proposed
methods by adapting a well-trained model on LIBRISPEECH to
4 different domains in the YouTube partition of GIGASPEECH
XL subset. Results show around 15% to 30% relative WER re-
duction on test sets from target domains, while almost without
deterioration on test sets from the source domain. By combin-
ing the proposed methods with LM shallow fusion, performance
on target domains can be further improved at the cost of minor
WER degradation on the source domain. Overall, our proposed
methods offer a promising solution for improving ASR perfor-
mance in text-only domain adaptation scenarios
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