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Abstract
Low-resource accented speech recognition is one of the im-

portant challenges faced by current ASR technology in practi-
cal applications. In this study, we propose a Conformer-based
architecture, called Aformer, to leverage both the acoustic in-
formation from large non-accented and limited accented train-
ing data. Specifically, a general encoder and an accent encoder
are designed in the Aformer to extract complementary acoustic
information. Moreover, we propose to train the Aformer in a
multi-pass manner, and investigate three cross-information fu-
sion methods to effectively combine the information from both
general and accent encoders. All experiments are conducted on
both the accented English and Mandarin ASR tasks. Results
show that our proposed methods outperform the strong Con-
former baseline by relative 10.2% to 24.5% word/character er-
ror rate reduction on six in-domain and out-of-domain accented
test sets.
Index Terms: speech recognition, accented ASR, multi-pass
training, cross-information fusion

1. Introduction
In recent years, the performance of automatic speech recog-
nition (ASR) on high-resource languages has benefited enor-
mously from neural models [1, 2, 3]. The excellent perfor-
mance makes these ASR systems widely being used in variety
of commercial speech recognition products [4, 5, 6]. However,
it is well-known that ASR system performance degrades signifi-
cantly when encountering accent speech, especially when these
accents are not existing in the ASR training dataset [7]. Accent
is a special way of pronunciation, which is influenced by the re-
gion, the speaking style and the level of speaker’s education [8],
etc. Such as in remote regions or villages of south China, those
accents are very different and seriously affect the pronuncia-
tion of Mandarin. All these accent variations lead to extremely
expensive and time-consuming for transcribing heavy accented
speech. Therefore, in the literature, there is a serious data spar-
sity problem of non-mainstream accented speech, building high
performance ASR system for low-resource accented speech is
very important and fundamental.

In the past few years, many research works have been ex-
plored for improving accented speech recognition. Such as
in [9, 10, 11], different model adaptation methods were pro-
posed to handle the non-native speech recognition. In [12], they
proposed a multi-accent deep acoustic model with an accent-
specific top layer and shared bottom hidden layers. While
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in [13], authors explored to finetune a particular subset of neu-
ral network layers with limited accent data. Fine-tuning a pre-
trained model using limited accent speech is a straightforward
way to handle the accent issue [14, 15, 16]. In most recent years,
many works focus on extracting representative accent embed-
ding to improve the accented ASR, such as in [17], they ex-
tracted the accent embedding from a well-trained accent clas-
sifier to perform the layer-wise adaptation of end-to-end ASR
model; In [18], they just used one-hot embedding to build a
multi-dialect ASR system; And in [19], they designed a TTS
auxiliary model to convert accent information into a global style
embedding for improving the accent robustness of E2E ASR
model. All these previous works have been greatly boosted
the performance of accented speech recognition, however, most
works still requires balanced or large amount of accented speech
training data. The works about how to leverage the available
large amount of non-accent training data to improve the low-
resource accented ASR system are still very limited.

In this paper, we aim to investigate using large amount of
non-accented training data to boost the performance of low-
resource accented speech recognition. Three contributions are
explored: 1) a unified architecture with both general and accent
encoders are proposed. These encoders are designed to integrate
the general acoustic information that learnt from large available
non-accented training data and the accent-dependent acoustic
information that extracted from the limited low-resource ac-
cented speech; 2) a multi-pass training is explored to build
relatively stable accent and general encoders; 3) Three cross-
information fusion methods are exploited to effectively com-
bine the information from both general and accent encoders.
All methods are improvements of the state-of-the-art Con-
former [20] system. Experiments are performed on both ac-
cented English and Mandarin ASR tasks. Results show that,
compared with the Conformer baseline, on the in-domain In-
dian and Guangdong accent test sets, our proposed methods
can achieve 10.6% relative word error rate (WER) reduction
and 15.6% relative character error rate (CER) reduction, respec-
tively. On the out-of-domain accented test sets, we also obtain
10.2% to 24.5% performance improvements on both the English
and Mandarin accented ASR tasks.

2. Conformer-based ASR
In this paper, all our contributions are based on the convolution-
augmented Transformer (Conformer) E2E ASR model that has
been recently proposed in [20]. In order to improve the ability
to capture locality of a sequence, Conformer inserts a convolu-
tion layer into the transformer block [21]. Because of its consis-
tent excellent performance over a wide range of ASR tasks [22],
Conformer has been taken as the state-of-the-art E2E ASR tech-
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Figure 1: System architecture of the proposed Aformer framework.

nique, more and more Conformer variants have been explored in
recent years [23]. The basic Conformer block consists mainly of
four modules: the first feed-forward module (FFN1), the multi-
head self-attention module (MHSA), the convolution module
(Conv) and another feed-forward module (FFN2). Given an in-
put sequence x, the output y of one Conformer block can be
mathematically defined as:

xFFN1 = x+
1

2
FFN(x),

xMHSA = xFFN1 +MHSA(xFFN1),

xConv = xMHSA +Conv(xMHSA),

xFFN2 = xConv +
1

2
FFN(xConv),

y = Layernorm(xFFN2)

(1)

More details of the Conformer E2E ASR model can be re-
ferred to [20]. During Conformer training, the following multi-
task criteria using interpolation of the CTC and attention cost is
adopted [24],

L = (1− λ)Latt + λLctc (2)

Where the task weight λ is empirically set to 0.3 and fixed
throughout the experiments of this paper.

3. Proposed Methods
In this section, we introduce the details of our proposed
Aformer, which is specially designed for improving the perfor-
mance of low-resource end-to-end accented speech recognition.
The whole model architecture is presented in Section 3.1, fol-
lowed by the description of multi-pass training in Section 3.2,
and the cross-information fusion methods are described in Sec-
tion 3.3.

3.1. Architecture

The whole architecture of our proposed Aformer is illustrated in
Fig.1. Compared with the standard Conformer in Section 2, the

only difference is the purple highlighted two blocks: the accent
encoder and the information fusion. All other blocks are exactly
the same as Conformer in Section 2, including the FBANK ex-
traction, CNN sub-sampling, positional encoding, the general
encoder, and the decoder, etc.

Assuming the outputs of two encoders are XG
enc and XA

enc

for the general and accent encoder, respectively. The informa-
tion fusion block is designed to effectively combine the different
acoustic representations as

XF
enc = Fusion(XG

enc, X
A
enc) (3)

where the fusion methods are demonstrated in subfigure (a), (b)
and (c) of Fig.1, and they will be presented in detail in Sec-
tion 3.3. Finally, together with the token embedding, the com-
bined acoustic embedding XF

enc is then fed into the decoder
module to get the decoding outputs.

The principle behind the design of Aformer is that, we aim
to leverage the acoustic information in large amount of open-
source non-accent training speech to boost the low-resource ac-
cented speech recognition. Therefore, in Aformer, we keep us-
ing the original Conformer encoder in [20] as the general en-
coder to extract the general accent-invariant acoustic context
embedding, while adding a much simpler network as the ad-
ditional accent encoder to learn the accent-dependent acoustic
attributes from extremely low-resource accented data. After a
proper embedding fusion, we expect these two different acous-
tic representatives will be well integrated to improve the final
accented E2E ASR system.

3.2. Multi-pass Training

The proposal of multi-pass training of Aformer is motivated by
the heavy data imbalance between non-accented and accented
ASR training speech. Under the low-resource accented ASR
condition, the labeled accented speech is normally a few min-
utes to tens of hours, these limited data is not enough to well
train a separate accent encoder. Therefore, the multi-pass train-
ing is proposed, it aims to not only provide an good initializa-
tion of the general and accent encoders, but also to enable the
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Aformer concentrate on well training the specific encoder at dif-
ferent training pass. The detail of Aformer multi-pass training
can be divided into three passes as follows:
• Pre-training: Use the available large amount of non-

accented training speech to train Aformer as the initialization
model (A1).

• Accent encoder adaptation: Freeze the parameters
of the general encoder, use the provided low-resource ac-
cent training data to only adapt the accent encoder of A1 to
learn the specific accent acoustic characteristic. This adapted
model is termed as A2.

• Re-training: Pooling both the non-accented and accent
training data together to re-train the Aformer (A3) based on
the adapted A2.

By performing the above three-pass model training, both the
information in the limited accented and large amount of non-
accented training data are effectively exploited, which helps the
final Aformer A3 has the ability to well capture both the general
acoustic context and accent-dependent acoustic information for
improving the low-resource accented E2E ASR system perfor-
mance.

3.3. Cross-information Fusion

In the proposed Aformer, how to combine the outputs of its two
different encoders is very important. In this study, we investi-
gate three ways to perform the information fusion for validating
the complementarity between two encoders’ outputs. Details
are shown in Fig.1 (a) to (c). Specifically, (a) and (b) are two tra-
ditional information fusion methods that defined in Eq.(4) and
(5): the linear addition and the concatenation.

XF
enc = Add(XG

enc, X
A
enc) (4)

XF
enc = Concat(XG

enc, X
A
enc) (5)

Different from (a) and (b), in Fig.1(c), we propose a two-
layer cross-attention structure to combine the embeddings of the
general and accent encoders as,

XM
enc = Relu(Softmax(

QA
enc(K

G
enc)

T

√
datt

)V G
enc),

XF
enc = Relu(Softmax(

QM
enc(K

A
enc)

T

√
datt

)V A
enc),

Qi
enc =WQ

i X
i
enc,K

i
enc =WK

i Xi
enc, V

i
enc =WV

i X
i
enc

(6)
Where Xi

enc ∈
{
XG

enc, X
A
enc, X

M
enc

}
, datt is the attention di-

mension. Qi
enc, Ki

enc and V i
enc are the query, key and value

linear projections on the encoder output XG
enc, XA

enc and the
output of the first layer cross-attention XM

enc, respectively. The
projections are parameter matrices WQ

i , WK
i and WV

i . This
cross-attention structure is used to highlight the complementary
information between the general and accent-dependent acoustic
embeddings, making the combined encoder output XF

enc more
robust and representative.

4. Experiments
4.1. Datasets

In this study, two language datasets are used to examine the ef-
fectiveness of our proposed methods, one is English and the
other is Mandarin. To simulate low-resource accented ASR

tasks, we use the “train-clean-360” [25] as the non-accented
English training data, and randomly select 20 hours (hrs) En-
glish data with Indian (IN) accent from the publicly available
Common Voice [26] as the limited accented training data. For
Mandarin task, the open-source Aishell [27] is taken as the non-
accented training data, while the accented Mandarin datasets are
all collected from a live speech service system of Unisound cor-
poration in China (https://www.unisound.com/). 20 hrs Man-
darin with Guangdong (GD) accent is selected as the training
data. Six accent test sets are used for system evaluation, includ-
ing the IN and GD in-domain test sets, and four out-of-domain
test sets with England (EN), Canada (CA), Sichuan (SC) and
Hunan (HN) accents. More details are shown in Table 1.

Table 1: Details of both non-accented and accented English and
Mandarin datasets.

English (#hrs) Mandarin (#hrs)

Train Test Train Test
LibriSpeech 360 5.4 Aishell 164 10
Indian 20 3.8 Guangdong 20 2.0
Canada - 2.2 Hunan - 2.0
England - 1.9 Sichuan - 2.0

4.2. Experimental Setups

We use 80-dimensional log Mel-filter bank (FBANK) plus one-
dimensional pitch as input acoustic feature. They are computed
using 25ms windows with a 10ms hop. The utterance-level cep-
stral mean and variance normalization (CMVN) computed us-
ing the training set is applied on the FBANK for feature normal-
ization. All our experiments are implemented with the ESPnet
[28] end-to-end speech processing toolkit. No data augmenta-
tion and no extra language model are applied.

For the acoustic encoder of Aformer, the input features
are first sub-sampled by the convolution subsampling module
which contains two 2-D convolutional layers with stride 2. The
general encoder of Aformer contains 12 conformer encoder lay-
ers with 2048-dimension feed-forward and 256-dimension at-
tention with 4 self-attention heads. Two structures of accent en-
coder are investigated, one is with 4 transformer encoder layers,
the other is with 2 layers 256-dimensional LSTM. All models
are trained with the Adam optimizer [29]. The warmup learn-
ing schedule [30] is used for our first 25K training iterations,
and both label smoothing [31] weight and dropout is set to 0.1
for model regularization.

In English tasks, 3000 byte-pair-encoder (BPE) [32] units
generated by SentencePiece [33] are taken as the decoder out-
puts. In Mandarin tasks, we use 4231 Chinese characters as the
Aformer modeling units. The CTC weight is set to 0.3 during
both model training and inference. The word error rates (WER)
and character error rate (CER) are used for evaluating the ASR
performance for English and Mandarin tasks, respectively.

4.3. Results and Discussions

4.3.1. Results on English Accented-ASR

Table 2 presents the performance of low-resource English ac-
cented ASR systems. E1 is the Conformer system trained only
on 360 hrs LibriSpeech data, and E2 is finetuned from E1 using
20 hrs Indian accent speech. E3 to E6 are all Aformer systems
that trained using the combined LibriSpeech and Indian train-
ing data with the proposed multi-pass training. However, in E3,
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Table 2: WER(%) for low-resource English accented ASR task.

ID Train System Fusion Test Set
IN EN CA

E1 LibriSpeech Conformer - 78.1 36.4 20.7
E2 Indian +Finetune - 36.7 40.6 23.2

E3

Aformer

Add-LSTM 34.0 40.2 22.7
E4 LibriSpeech Add 33.1 32.5 17.6
E5 +Indian Concat 33.2 32.5 17.9
E6 Cross-attention 32.8 32.2 17.5

the accent encoder is 2-layers LSTM, while in E4 to E6, their
accent encoder are the 4 transformer layers but with different
encoder output fusion methods.

Comparing the results of E1 system, it’s clear that the Con-
former performance is significantly degraded when it meets ac-
cented test speech, especially when the heavy accent deviates
far from the training data. E.g. on Indian test set, the WER
reaches to 78.1%, while on test sets with England and Canada
accents, the WER numbers are greatly reduced to 36.4% and
20.7%. This is because compared with IN accent, the EN and
CA are more close to the speaking style or acoustics of the
data in LibriSpeech. When comparing E1 and E2, we see 53%
WER reduction on IN test set, even there are slight performance
degradation on the out-of-domain EN and CA test sets. It indi-
cates that the traditional finetuning is very effective to obtain
good results on low-resource accented ASR task. Thus, we take
E2 as our baseline.

E3 and E4 are used to compare different accent encoder
structures. We see that, E4 is much better than E3, this may due
to the acoustic modeling ability of transformer is much stronger
than LSTM, and 4-layers transformer has more parameters than
the 2-layers LSTM. Difference between E4 to E6 are only the
three information fusion methods to combine the embeddings
of general and accent encoders. It’s clear that, there is no big
performance gap between using linear addition (Add) and con-
catenation (Concat), and the proposed cross-attention fusion
achieves the best results. In conclusion, the proposed Aformer
with all three fusion methods can obtain much better results
than baseline system of E2, both on the in-domain and out-of-
domain accented test sets. And compared with E2, the best sys-
tem E6 achieves 10.6%, 20.6% and 24.5% relative WER reduc-
tion on IN, EN and CA accented test set, respectively. It means
that, our proposed Aformer is more effective and has stronger
generalization ability to out-of-domain accented speech than the
conventional finetuning.

4.3.2. Results on Mandarin Accented-ASR

Table 3: CER(%) on Mandarin accented ASR task.

ID Train System Fusion Test Set
GD HN SC

M1 Aishell Conformer - 53.0 54.8 51.6
M2 Guangdong +Finetune - 29.4 38.7 40.1

M3

Aformer

Add-LSTM 26.6 35.1 37.5
M4 Aishell Add 25.7 34.7 35.6
M5 +Guangdong Concat 25.3 34.7 36.2
M6 Cross-attention 24.8 34.0 36.0

Table 3 shows the performance on the low-resource Man-
darin accented ASR task. Similar as the system E1 to E6 in
Table 2, M1 and M2 are taken as the baseline systems, M3 to
M6 are the proposed Aformer with different accent encoder and
information fusion methods. Different from the observation in

E1 results, the CERs of M1 on the GD, HN and SC are almost
at the same level, it tells us that, all these three accents devi-
ates far from the non-accented Aishell training data. When M1
is finetuned by 20 hrs Guangdong accent data, the performance
on all three accented test sets are greatly improved, even the im-
provement gain on in-domain GD is much larger than the ones
on other two out-of-domain test sets.

The findings in M3 to M6 are consistent with the ones that
observed in E3 to E6 from Table 2, such as, the best results
are also achieved from the Aformer (M6) using transformer ac-
cent encoder and cross-attention method for information fusion.
Compared with M2, system M6 obtains a relative CER reduc-
tion of 15.6%, 12.1% and 10.2% on the GD, HN and SC ac-
cented test sets, respectively.

4.3.3. Ablation of Multi-pass Training

Fig. 2 shows our ablation experimental results to verify the ef-
fectiveness of the proposed multi-pass training. All these exper-
iments are performed on E4 and M4. In Fig. 2, four bars means
using the three different training stages in multi-pass training
that described in Section 3.2. It is worth mentioning that (a1)
is the ”Pre-training” described in Section 3.2 with only non-
accented data, and (a2) is the pre-training with mixing all the
accented and non-accented data together to train the Aformer
structure. (b) and (c) are exactly the same as described in Sec-
tion 3.2. The white four bars are WER% on the Indian test set
of E4, while the pink four ones are CER% on the Guangdong
test set of M4. It’s clear that, the re-trained Aformer achieves
the best results on both English and Mandarin accented ASR
tasks. It means that, the multi-pass training is effective than
only using pooling data to train the Aformer, and the Aformer
that finetuned using the accented training data.

Figure 2: Ablation study of multi-pass training method.

5. Conclusion
In this study, we explore the approach of leveraging large
amount of non-accented training data to enhance the low-
resource accented end-to-end ASR system. Based on the stan-
dard Conformer ASR architecture, we propose an Aformer to
capture both the general acoustic context and accent-dependent
acoustic information. Moreover, a multi-pass training and dif-
ferent cross-information fusion methods are also investigated to
further improve the Aformer. Results on both the low-resource
accented English and Mandarin ASR tasks show that, the pro-
posed methods outperform the finetuned Conformer signifi-
cantly, either on the in-domain or the out-of-domain accented
speech test sets.
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