
Advances in Language Recognition in Low Resource African Languages:
The JHU-MIT Submission for NIST LRE22

Jesús Villalba1,2, Jonas Borgstrom3, Maliha Jahan1, Saurabh Kataria1,2,
L. Paola Garcı́a-Perera1,2, Pedro A. Torres-Carrasquillo3, Najim Dehak1,2

1Center for Language and Speech Processing, 2Human Language Technology Center of Excellence,
1,2Johns Hopkins University, Baltimore, MD, USA, 3MIT Lincoln Laboratory, Lexington, MA, USA

jvillal7@jhu.edu, jonas.borgstrom@ll.mit.edu

Abstract
We present the effort of JHU-CLSP/HLTCOE and MIT Lincoln
labs for NIST Language Recognition Evaluation (LRE) 2022.
LRE22 consisted of a language detection task, i.e., determin-
ing whether a given target language was spoken in a speech
segment. LRE22 focused on telephone and broadcast narrow-
band speech in African languages. Since LRE17, there has been
large progress in neural embeddings, combined or not, with
self-supervised models like Wav2Vec2. Therefore, one of our
goals was to investigate these new models, i.e., ECAPA-TDNN,
Res2Net, or Wav2Vec2+ECAPA-TDNN, in the LRE scenario.
In the fixed training condition, LRE22 target languages were
only included in a small development set. Hence, we focused on
tuning our models to exploit the limited data. For the open con-
dition, we built a massive training set including African data,
which improved Cprimary by 50% w.r.t. fixed. Wav2Vec2 em-
beddings were the best, outperforming ECAPA and Res2Net by
11 and 3%, respectively.
Index Terms: language recognition, x-vectors, low-resource
languages, African languages

1. Introduction
The National Institute of Standards and Technology (NIST)

regularly performs language recognition evaluations (LRE) to
appraise the state-of-the-art technology [1]. LREs consists of a
language detection task, i.e., determining whether a given tar-
get language was spoken in a speech segment. As in previous
evaluations, NIST LRE221 focused on conversational telephone
speech (CTS) and broadcast narrowband speech (BNBS). Also,
NIST LREs emphasized distinguishing between closely related
languages. While LRE15-17 [2] had several language clus-
ters, LRE22 entirely focused on African languages, mainly low-
resource (Tunisian Arabic, Algerian Arabic, Libyan Arabic,
North African French, Afrikaans, South African English, Indian
South African English, Ndebele, Oromo, Tigrinya, Tsonga,
Venda, Xhosa, and Zulu).

DISTRIBUTION STATEMENT A. Approved for public release.
Distribution is unlimited. This material is based upon work supported
by the Department of Defense under Air Force Contract No. FA8702-
15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not neces-
sarily reflect the views of the Department of Defense.

© 2023 Massachusetts Institute of Technology.
Delivered to the U.S. Government with Unlimited Rights, as defined

in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding
any copyright notice, U.S. Government rights in this work are defined
by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above.
Use of this work other than as specifically authorized by the U.S. Gov-
ernment may violate any copyrights that exist in this work.

1https://lre.nist.gov/uassets/3

This paper presents the joint effort of JHU-CLSP/HLTCOE
and MIT Lincoln labs for NIST LRE22. For LRE17, the best
approaches were based on bottleneck features used as input to
i-vector models or early TDNN x-vector networks [3, 4]. Af-
ter these five years, there has been massive progress in neural
embeddings, combined or not, with self-supervised models like
Wav2Vec2 [5] or WavLM [6]. However, research in this area
has been more intensive on the speaker recognition task rather
than language. ECAPA-TDNN [7] and Res2Net [8] provided
superior performance on VoxSRC [9] and NIST SRE [10] chal-
lenges. WavLM combined with ECAPA-TDNN outperformed
previous approaches in the VoxCeleb benchmarks in [6]. There-
fore, we investigated these new models, in the LRE scenario.

LRE22 offered fixed and open training conditions. For the
fixed, LRE22 target languages were only included in a small
development set. Hence, we focused on tuning our models
to exploit the limited data. For the open, we built a massive
training set of 150 languages, including the target African lan-
guages. The following sections describe our data setup, neu-
ral embeddings, back-ends, calibration, and fusion. We finalize
discussing our evaluation results and conclusions.

2. Datasets
2.1. Training Fixed
The fixed condition data for neural embedding training were,

• NIST LRE17 Train/Dev/Test: It contains Arabic (Egyp-
tian, Iraqi, Levantine, and Maghrebi), Chinese (Mandarin
and Min Nan), English (British, American), Slavic (Polish,
Russian), and Iberian Languages (Caribbean, European, and
Latin American Spanish; and Brazilian Portuguese) [2] in
24.1k CTS and 4.4k audio from video (AfV) recordings.

• Voxlingua107: This is a language recognition dataset mined
from Creative Commons (CC) YouTube videos [11]. This
dataset contains 2.4M utterances from 107 languages. We
removed Arabic, English, Portuguese, and Spanish languages
because we want to discriminate between language variants,
while Voxlingua only provides high-level labels.

In total, we obtained 2.5M segments from 118 languages.

2.2. Training Open
We added some extra datasets for the open condition, including
Arabic dialects, South African, and Chinese languages.

• NIST SRE CTS Superset: This is a compilation of CTS
data from NIST SRE04-12 [12]. We removed the files with
undefined language; and generic English and Spanish labels.
However, we kept US and Indian English. In total, we ob-
tained 183.5k recordings from 25 languages.

• NIST SRE16 dev/eval: It contains 11.8k CTS recordings in
Mandarin, Cantonese, Cebuano, and Tagalog languages [13].

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

521 10.21437/Interspeech.2023-1094



• NIST SRE18-19 dev/eval: It contains 32.5k CTS recordings
in Tunisian Arabic [14, 15]

• NIST SRE21: It contains 16.6k CTS and 7.1k AfV in Man-
darin, Cantonese, and Chinese-accented English [16].

• IARPA Babel: These are 154k CTS recordings in 13 lan-
guages (Assamese, Bengali, Georgian, Haitian, Kazakh, Kur-
manji, Lao, Lithuanian, Pashto, Tamil, Telugu, Tok, Turkish,
Vietnamese, and Zulu) from the IARPA babel program [17].

• ADI17: This is a dataset for fine-grained Arabic dialect iden-
tification collected from YouTube [18]. It contains more than
3k hours of data, 1M utterances, and 17 dialects.

• FLEURS2022: The Few-shot Learning Evaluation of Uni-
versal Representations of Speech [19] data consists of read
speech using phrases from Wikipedia. We just used four lan-
guages included in the LRE22 (Afrikaans, Oromo, Xhosa,
Zulu) with 12.2k segments.

• Lwazi2009: This corpus contains speech from the 11 of-
ficial languages in South Africa [20]. We used seven lan-
guages (Afrikaans, Ndebele, South African English, Xit-
songa, Tshivenda Xhosa, and Zulu) included in the LRE22
targets. Each language has 5 to 8 hours, about 200 speakers,
and 30 utterances per speaker. The data is read and elicited
speech recorded over landline or mobile channels.

• NCHLT2014: Wide-band speech from about 200 speakers
per language in each of the eleven official languages of South
Africa [21]. We used five languages (Afrikaans, Ndebele,
Xitsonga, Xhosa, Zulu) with 50k segments.

• AMMI2020: Speech recordings were elicitated from text
collected during the African Master of Machine Intelligence
using mobile applications [22]. We used just the Tigrinya
language with about 2.5h of speech.

• AST2004: A-law telephone speech simulating a hotel book-
ing application collected for the African Speech Technology
project [23]. We used Afrikaans variants, South African En-
glish, Indian South African English, Xhosa, and Zulu.

• CommonVoice: Multilingual read speech corpus [24] from
which we got Indian English, Tigrinya, and French dialects
(European, Canadian, and North African) (63.7k segments).

We combined the above datasets with the fixed condition
data and removed VoxLingua107 French and LRE17 Maghrebi
Arabic, obtaining 4M segments from 150 languages.

2.3. Development
LRE22 dev was used for training back-ends, performance eval-
uation, calibration, and fusion. We split it into two folds, so we
trained a back-end in fold 1 and evaluated it in fold 2 and vice-
versa. Then, we pooled the scores from both folds and trained
a single calibration and fusion. Segments in LRE22 dev come
from a small number of speakers. To have different speakers in
each fold, we split the data as follows. First, an ECAPA-TDNN
network computed language embeddings, and PCA reduced the
embedding dimension while keeping 97.5% of the data vari-
ance. Then, for each language, we projected the embeddings to
two dimensions using T-SNE and clustered them by Agglomer-
ative Hierarchical Clustering (stopping threshold tuned by visu-
alizing the T-SNE plots). Finally, each cluster was assigned to
fold 1 or 2, so both folds have the same number of utterances.

2.4. LRE17 Maghrebi Arabic
LRE17 contains Maghrebi Arabic, while the LRE22 has
Maghrebi sub-dialects (Tunisian, Algerian, and Libyan). To
avoid pulling all Maghrebi dialects to the same embedding, we

relabeled LRE17. First, we trained an ECAPA-TDNN on the
fixed condition data with the original labels. Then, we trained a
linear Gaussian classifier on the LRE22 dev Maghrebi dialects
and evaluated it on LRE17. We kept the LRE17 segments with
dialect posteriors larger than 0.975 and discarded the rest. For
the open condition, we just discarded LRE17 since there were
enough Maghrebi dialects in ADI17 and SRE18-19.

2.5. Augmentations
We applied telephone codecs to all non-telephone data. For
large datasets (ADI, Voxlingua107, CommonVoice), we only
used the version with codecs. For the rest, we used aug-
mented and original audios. We used GSM, G711 mu/A-law,
G222, G723.1, G726 (code sizes 2 to 5) and Opus (bitrates 4.5-
32kbps).

For x-vector training, we augmented speech on the fly with
MUSAN noise2 and reverberation from RIR3. For back-end
training, we augmented the LRE22 dev 10× with different
noise, reverberation, and random duration cuts (3-30 secs) and
combined them with the original recording.

3. Neural Embeddings
We used language embedding architectures following the x-
vector scheme [26]. The embedding network consists of
an encoder that extracts frame-level discriminant embeddings,
a pooling mechanism, and a classification head. We used
ECAPA-TDNN and Res2Net architectures for the encoders, and
channel-wise attentive statistics pooling [7]. For the open con-
dition, we also used Wav2Vec2 encoder followed by ECAPA-
TDNN. Unless indicated otherwise, the network minimizes ad-
ditive angular margin softmax loss [27]. The acoustic features
were 64 log-Mel filter-banks computed at 8 kHz sampling fre-
quency. Features were short-time mean normalized with a 3
seconds window. Silence frames were removed using Kaldi en-
ergy VAD.

3.1. TSE-Res2Net50
Res2Net50 [8] consists of an input stem layer followed by
16 Res2Net bottleneck residual blocks. The bottleneck layer
in the Res2Net blocks is divided into eight groups (scale).
Each group (except the first one, which is just copied in the
output) passes through a 3×3 convolution and is added to
the input of the convolution of the next group. Hence, each
group observes a different receptive field. We also used Time-
Squeeze-Excitation (TSE) [28, 29], which scales channel and
frequency dimensions at the output of each residual block
according to their importance. The encoder output was re-
shaped from (B,C, F/8, T/8)–F =Mel filters, T =time– to
(B,C × F/8, T/8) before the global pooling layer.

For the fixed condition, we trained on 3-second chunks
and 512 effective batch-size–The actual batch size depended
on GPU memory and network size, and gradient accumulation
was used to achieve the desired effective batch size. We used
Adam optimizer with lr=0.01 warmed up for 5k steps. After 40
steps, the learning rate was divided by two every 16k steps. We
used AAM-Softmax [27] objective with margin=0.2 scale=30
and Inter-Top margin=0.1 with K=5 [30]. For the open condi-
tion, we halved the learning rate every 24k steps.

The networks were fine-tuned by uniformly sampling lan-
guages. We used SGD with lr=0.1 and momentum=0.9. The
learning rate warmed up for 5k steps, then divided by two ev-
ery 4k steps. We tried several margin values and chunk-sizes.

2http://www.openslr.org/resources/17
3http://www.openslr.org/resources/28

522



Table 1: Fixed Condition Results on LRE22 dev and eval.

System LRE22 dev LRE22 eval

Name Embed. BE Min Cp Act Cp Min Cp Act Cp

NIST Baseline [25] 0.600 0.730

1

ECAPA-TDNN

Linear GBE 0.257 0.259 0.254 0.256
2 Linear SVM 0.266 0.268 0.279 0.282
3 GCA 0.245 0.247 0.270 0.270
4 Gauss. SVM 0.205 0.207 0.278 0.280

5

TSE-Res2Net

Linear GBE 0.248 0.248 0.251 0.252
6 Linear SVM 0.239 0.242 0.273 0.274
7 GCA 0.232 0.235 0.270 0.270
8 Single Gauss. SVM 0.183 0.186 0.282 0.286

9
ECAPA-TDNN-Focal

Linear GBE 0.239 0.243 0.246 0.247
10 Linear SVM 0.245 0.246 0.274 0.274
11 Gauss. SVM 0.188 0.190 0.279 0.282

Eval
7-sys 3+4+7-11 0.153 0.156 0.220 0.224
Primary 6-sys 3+4+7+8+10+11 0.153 0.155 0.220 0.224
5-sys 3+7+8+10+11 0.154 0.155 0.221 0.225
4-sys 7+8+10+11 0.153 0.154 0.223 0.227
3-sys 7+8+11 0.156 0.159 0.227 0.233
2-sys 8+11 0.162 0.163 0.250 0.254

Post-Eval
Post 1 1+3+5+7+9 0.197 0.200 0.213 0.214
Post 2 3+7+9 0.197 0.198 0.212 0.213
Post 3 1+3+9 0.218 0.219 0.218 0.221
Post 4 7+9 0.203 0.205 0.216 0.216

We also switched the loss function to Subcenter AAM-Softmax
with two subcenters [31]. We concluded that fine-tuning with
long recordings or large margins hurt–large margin could raise
Cprimary ×2, so we set the chunk back to 3 seconds and mar-
gin=0. The number of epochs in each stage was selected by
evaluating the model epoch by epoch on the dev data. We also
tried fine-tuning with hard prototype mining [32] without im-
provements.

3.2. ECAPA-TDNN
ECAPA-TDNN [7] can be regarded as a TSE-Res2Net with 1D
dilated convolutions. Following [9], we used a network with
four Res2Net blocks with 2048 channels each. The outputs of
each Res2Net block were concatenated at the encoder output
and projected to 4096 dimensions before global pooling.

The network was trained following the same scheme as the
TSE-Res2Net. In this case, we obtained a slight improvement
by a second finetuning stage with hard prototype mining with
eight hard prototypes per language. We also fine-tuned another
network with Focal loss [33] instead of AAM-softmax, Cutmix
regularization [34], and 16 hard prototypes.

3.3. Wav2Vec2 + ECAPA-TDNN
This extractor follows the scheme in [6]. The input audio
was upsampled to 16 kHz and processed by a Multilingual
Wav2Vec2 with 300M params trained on 128 languages4 [5].
We compute a weighted average of the transformer’s hidden
layers. Finally, we fed the result into an ECAPA-TDNN with
3 Res2Net layers and 1024 neurons per layer.

The ECAPA-TDNN and transformer layers’ weights were
trained while the Wav2Vec2 encoder was frozen. The loss func-
tion was Subcenter AAM-Softmax with scale= 32, margin= 0,
and two subcenters. We used SGD optimizer with a maxi-
mum learning rate of 0.45, momentum=0.9, and effective batch-
size=1024. The learning rate was warmed up for 5k steps. Af-
ter 32k steps, we halved the learning rate every 16k steps. We

4https://huggingface.co/facebook/wav2vec2-xls-r-300m

trained using 3-second chunks for nine epochs. We also tried
to finetune the wav2vec2 encoder, but it over-fitted damaging
performance.

4. Back-ends
The back-ends were mainly trained on LRE22 dev augmented
as indicated in Section 2.5. To score the LRE22 dev, we divided
the dev data into two folds as explained in Section 2.3, trained
on fold 1 and evaluated on fold 2 and vice-versa. To score the
LRE22 eval, we trained the back-end on the full LRE22 dev
data. All back-ends preprocessed the data by centering, whiten-
ing, and length normalization.

4.1. Gaussian Back-end
This was a linear Gaussian classifier with one Gaussian per tar-
get language and a covariance shared across languages.

4.2. Linear/Gaussian SVM
These were multi-class SVM classifiers with linear or Gaus-
sian kernels. They were trained on LRE22 dev augmented and
LRE17. LRE17 Maghrebi Arabic was relabeled into the three
target Arabic dialects as explained in Section 2.4. The remain-
ing languages in LRE17 were added as negative samples.

4.3. Generative Condition-Aware (GCA) Back-end
The GCA back-end jointly models embeddings and their as-
sociated vectors of language log-likelihoods extracted using a
Gaussian back-end classifier. The model assumes a discrete
set of underlying signal conditions, modeled as latent random
variables, which can represent acoustic conditions in the input
signals due to extrinsic variabilities. Embeddings and score vec-
tors are then modeled as condition-dependent Normal variables.
The Expectation-Maximization (EM) algorithm was used for
parameter estimation. During inference, we marginalize over
the latent conditions. The GCA back-end extends the genera-
tive condition-aware score calibration proposed in [35].

523



Table 2: Open Condition Results on LRE22 dev and eval.

System LRE22 dev LRE22 eval

Name Embed. BE Min Cp Act Cp Min Cp Act Cp

1

ECAPA-TDNN

Linear GBE 0.125 0.130 0.144 0.144
2 Linear SVM 0.129 0.129 0.172 0.172
3 GCA 0.119 0.121 0.150 0.150
4 Gauss. SVM 0.090 0.091 0.160 0.161

5

TSE-Res2Net

Linear GBE 0.105 0.107 0.126 0.128
6 Linear SVM 0.126 0.128 0.154 0.154
7 GCA 0.104 0.104 0.136 0.136
8 Alt. Single Gauss. SVM 0.092 0.093 0.142 0.143

9
Wav2Vec2

Linear GBE 0.094 0.095 0.123 0.124
10 Linear SVM 0.112 0.113 0.144 0.144
11 Single Gauss. SVM 0.088 0.089 0.140 0.141

Eval
Primary 6-sys 3+4+7+8+9+11 0.055 0.056 0.094 0.095
2 nets × 2 be 7+8+9+11 0.056 0.057 0.098 0.099
3 nets × 1 be 4+7+11 0.056 0.058 0.097 0.098
2 nets × 1 be 7+11 0.060 0.061 0.102 0.103

Post-Eval
Post 1 1+3+5+7+9 0.062 0.064 0.089 0.090
Post 2 3+5+7+9 0.065 0.066 0.089 0.089
Post 3 3+7+9 0.065 0.065 0.089 0.090
Post 4 7+9 0.065 0.066 0.096 0.096
Post 5 1+5+9 0.071 0.073 0.094 0.094

5. Calibration and Fusion
Linear logistic regression with the Focal Multiclass toolkit5 was
used for calibration and fusion. They were trained on the 2-fold
cross-validation LRE22 dev scores and applied on dev and eval.
First, we calibrated each system separately. Then, we fused
them on top of the calibrated scores. This allowed us to obtain
meaningful fusion weights. We started fusing all embeddings
networks × all back-ends. Based on the weights, we decided
which systems to remove to obtain fusions of different sizes.

6. Results
Tables 1 and 2 show the results for our fixed and open condition
single systems and fusions.

6.1. Single Systems
For the fixed condition, TSE-Res2NET and ECAPA-TDNN
finetuned with focal loss were comparable in dev and better
than ECAPA-TDNN finetuned with AM-softmax loss. How-
ever, the distance between networks was reduced in eval, be-
ing all comparable. For the open condition, Wav2Vec2-based
embeddings were the best in dev and eval, closely followed
by TSE-Res2Net, and at a significant distance from ECAPA-
TDNN. This result suggests that we need to train the embed-
dings on data that include the target languages to take advantage
of the capacity of the most complex architectures.

Regarding back-ends, Gauss SVM was significantly bet-
ter on dev but over-fitted, being the worst on eval despite our
clustering method to assign different speakers to each dev fold.
GCA also over-fitted but to a lesser degree. The most simple
linear Gaussian back-end was the best on eval.

6.2. Fusions
Primary fusions combined six systems (3 embeddings × 2 back-
ends). They improved Cprimary by 21 and 32% relative w.r.t.
the best single system in the fixed and open conditions, respec-
tively. Improvements by fusing two systems were 11 and 26%,

5https://sites.google.com/site/nikobrummer/focalmulticlass

for fixed and open. Open condition fusions improved 50-56%
w.r.t. their fixed counterparts. For individual languages, open
condition relative improvement ranged from 26% (Eng-IAF,
Fra-NTF) to 75% (Oromo).

In post-eval, we repeated the fusions removing the over-
fitted SVM back-ends obtaining a 5% relative improvement in
the eval set. In this case, the gain of fusing five systems was re-
duced to just 6%. This result indicates that fusion helped to
counteract the negative effect of over-fitted back-ends in our
original submissions. However, the fusion gains were mini-
mal when using more robust back-ends, indicating that all em-
beddings captured similar information. Despite GCA being
slightly over-fitted, fusions combining GBE and GCA back-
ends performed better than fusions using just the GBE back-
end–compare Post 3 vs Post 5 in Table 2.

7. Conclusions
Our submissions to NIST LRE22 were fusions of different
embedding networks combined with different Gaussian and
SVM back-ends. In the fixed training condition, we observed
little difference between network architectures. Meanwhile,
for the open condition, more powerful architectures (Res2Net,
Wav2Vec2) outperformed smaller networks (ECAPA-TDNN).
This indicates that larger architectures must be trained on tar-
get language data to be effective. Our best single system was
a multilingual Wav2Vec2 model pre-trained on 128 languages
with an ECAPA-TDNN head trained on our open dataset of 150
languages. Regarding back-ends, the simple linear Gaussian
back-end performed the best in eval while SVMs over-fitted.
Removing SVM back-ends from the fusion improved Cprimary
by 6%. We created an open-condition training set comprising
12 extra datasets containing LRE22 target languages and oth-
ers. In total, we gathered 4M recordings from 150 languages.
This provided a 50% improvement w.r.t. fixed condition. We
will release recipes to replicate our results at publication time6.

6https://github.com/hyperion-ml/hyperion/tree/master/egs/lre22

524



8. References
[1] A. F. Martin, C. S. Greenberg, J. M. Howard, G. R. Doddington,

and J. J. Godfrey, “NIST Language Recognition Evaluation - Past
and Future,” in Proc. The Speaker and Language Recognition
Workshop (Odyssey 2014), 2014, pp. 145–151.

[2] S. O. Sadjadi, T. Kheyrkhah, C. Greenberg, E. Singer,
D. Reynolds, L. Mason, and J. Hernandez-Cordero, “Performance
Analysis of the 2017 NIST Language Recognition Evaluation,” in
Proc. Interspeech 2018, 2018, pp. 1798–1802.

[3] F. Richardson, P. A. Torres-Carrasquillo, J. Borgstrom, D. Sturim,
Y. Gwon, J. Villalba, N. Chen, J. Trmal, N. Chen, and N. De-
hak, “The MIT Lincoln Laboratory / JHU / EPITA-LSE LRE17
System,” in Proceedings of Odyssey 2018 - The Speaker and Lan-
guage Recognition Workshop, Les Sables d’Olonne, France, 2018.

[4] A. Mccree, D. Snyder, G. Sell, and D. Garcia-Romero, “Language
Recognition for Telephone and Video Speech: The JHU HLTCOE
Submission for NIST LRE17 ,” in The Speaker and Language
Recognition Workshop (Odyssey 2018), 2018, pp. 68–73.

[5] A. Babu, C. Wang, A. Tjandra, K. Lakhotia, Q. Xu, N. Goyal,
K. Singh, P. von Platen, Y. Saraf, J. Pino, A. Baevski, A. Conneau,
and M. Auli, “XLS-R: Self-supervised Cross-lingual Speech Rep-
resentation Learning at Scale,” in Proc. Interspeech 2022, 2022,
pp. 2278–2282.

[6] S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li,
N. Kanda, T. Yoshioka, X. Xiao, et al., “Wavlm: Large-scale self-
supervised pre-training for full stack speech processing,” IEEE
Journal of Selected Topics in Signal Processing, vol. 16, no. 6,
pp. 1505–1518, 2022.

[7] B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA-
TDNN: Emphasized Channel Attention, Propagation and Aggre-
gation in TDNN Based Speaker Verification,” in Interspeech
2020, 2020.

[8] S. Gao, M. Cheng, K. Zhao, X. Zhang, M. Yang, and P. Torr,
“Res2Net: A New Multi-Scale Backbone Architecture,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
43, no. 2, pp. 652–662, feb 2021.

[9] J. Thienpondt, B. Desplanques, and K. Demuynck, “The Idlab
VoxSRC-20 Submission: Large Margin Fine-Tuning and Quality-
Aware Score Calibration in DNN Based Speaker Verification,” in
ICASSP 2021. IEEE, 2021, pp. 5814–5818.

[10] J. Villalba, B. J Borgstrom, S. Kataria, M. Rybicka, C. D. Castillo,
J. Cho, L. P. Garcı́a-Perera, P. A. Torres-Carrasquillo, and N. De-
hak, “Advances in Cross-Lingual and Cross-Source Audio-Visual
Speaker Recognition: The JHU-MIT System for NIST SRE21,” 6
2022, pp. 213–220, ISCA.

[11] J. Valk and T. Alumäe, “VoxLingua107: a Dataset for Spoken
Language Recognition,” in Proc. IEEE SLT Workshop, 2021.

[12] S. O. Sadjadi, “NIST SRE CTS Superset: A large-scale
dataset for telephony speaker recognition,” arXiv preprint
arXiv:2108.07118, 2021.

[13] S. O. Sadjadi, T. Kheyrkhah, A. Tong, C. Greenberg, D. Reynolds,
E. Singer, L. Mason, and J. Hernandez-Cordero, “The 2016 NIST
Speaker Recognition Evaluation,” 8 2017, pp. 1353–1357, ISCA.

[14] S. O. Sadjadi, C. S. Greenberg, D. A. Reynolds, E. Singer, L. Ma-
son, and J. Hernandez-Cordero, “The 2018 NIST speaker recog-
nition evaluation,” 8 2019, pp. 1483–1487.

[15] S. O. Sadjadi, C. Greenberg, E. Singer, D. Reynolds, L. Mason,
and J. Hernandez-Cordero, “The 2019 NIST Speaker Recognition
Evaluation CTS Challenge,” 11 2020, pp. 266–272, ISCA.

[16] O. Sadjadi, C. Greenberg, E. Singer, L. Mason, D. Reynolds,
et al., “NIST 2021 speaker recognition evaluation plan,” 2021.

[17] M. Harper, “Learning from 26 languages: Program management
and science in the babel program,” in COLING 2014, 2014.

[18] S. Shon, A. Ali, Y. Samih, H. Mubarak, and J. Glass, “Adi17:
A fine-grained arabic dialect identification dataset,” 5 2020, pp.
8244–8248, IEEE.

[19] A. Conneau, M. Ma, S. Khanuja, Y. Zhang, V. Axelrod, S. Dalmia,
J. Riesa, C. Rivera, and A. Bapna, “Fleurs: Few-shot learning
evaluation of universal representations of speech,” in IEEE Spo-
ken Language Technology Workshop (SLT), 2022, pp. 798–805.

[20] E. Barnard, M. Davel, and C. Van Heerden, “Asr corpus design
for resource-scarce languages,” Interspeech 2009, 2009.

[21] E. Barnard, M. H. Davel, C. van Heerden, F. De Wet, and
J. Badenhorst, “The nchlt speech corpus of the south african lan-
guages,” Workshop Spoken Language Technologies for Under-
resourced Languages (SLTU), 2014.

[22] J. H. Mohamud, L. A. Thompson, A. Ndoye, and L. Be-
sacier, “Fast development of asr in african languages using
self supervised speech representation learning,” arXiv preprint
arXiv:2103.08993, 2021.

[23] J. C. Roux, P. H. Louw, and T. R. Niesler, “The African speech
technology project: An assessment,” in Proceedings of the Fourth
International Conference on Language Resources and Evaluation
(LREC’04), Lisbon, Portugal, May 2004.

[24] R. Ardila, M. Branson, K. Davis, M. Kohler, J. Meyer, M. Hen-
retty, R. Morais, L. Saunders, F. Tyers, and G. Weber, “Com-
mon voice: A massively-multilingual speech corpus,” in Proceed-
ings of the 12th Language Resources and Evaluation Conference,
2020, pp. 4218–4222.

[25] Y. Lee, C. Greenberg, E. Godard, A. Butt, E. Singer, T. Nguyen,
L. Mason, and D. Reynolds, “The 2022 NIST Language Recogni-
tion Evaluation,” in Interspeech 2023, Dublin, Ireland, aug 2023,
pp. 496–500, ISCA.

[26] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-Vectors : Robust DNN Embeddings for Speaker Recog-
nition,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2018, Alberta,
Canada, apr 2018, pp. 5329–5333, IEEE.

[27] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Addi-
tive Angular Margin Loss for Deep Face Recognition,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019, pp. 4685–4694.

[28] S. Kataria, P. S. Nidadavolu, J. Villalba, N. Chen, L. P. Garcia-
Perera, and N. Dehak, “Feature Enhancement with Deep Feature
Losses for Speaker Verification,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Barcelona, Spain, may 2020, pp. 7584–7588.

[29] M. Rybicka, J. Villalba, P. Żelasko, N. Dehak, and K. Kowal-
czyk, “Spine2Net: SpineNet with Res2Net and Time-Squeeze-
and-Excitation Blocks for Speaker Recognition,” in Interspeech
2021, Brno, Czech Republic, aug 2021, pp. 496–500, ISCA.

[30] M. Zhao, Y. Ma, Y. Ding, Y. Zheng, M. Liu, and M. Xu,
“Multi-query multi-head attention pooling and inter-topk penalty
for speaker verification,” in ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022, pp. 6737–6741.

[31] J. Deng, J. Guo, T. Liu, M. Gong, and S. Zafeiriou, “Sub-center
ArcFace: Boosting Face Recognition by Large-Scale Noisy Web
Faces,” 10 2020, pp. 741–757.

[32] J. Thienpondt, B. Desplanques, and K. Demuynck, “Cross-
Lingual Speaker Verification with Domain-Balanced Hard Proto-
type Mining and Language-Dependent Score Normalization,” in
Proc. Interspeech 2020, 2020, pp. 756–760.

[33] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[34] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” in Proceedings of the IEEE/CVF international confer-
ence on computer vision, 2019, pp. 6023–6032.

[35] B. J. Borgstrom, “A generative approach to condition-aware score
calibration for speaker verification,” IEEE Transactions on Audio,
Speech, and Language Processing, 2022.

525


