
ASR for Low Resource and Multilingual Noisy Code-Mixed Speech

Tushar Verma†, Atul Shree†, Ashutosh Modi ‡

†Convin.AI, ‡Indian Institute of Technology Kanpur (IIT-K)
{tushar,atul}@convin.ai, ashutoshm@cse.iitk.ac.in

Abstract

Developing reliable Automatic Speech Recognition (ASR) sys-
tem for Indian Languages has been challenging due to the lim-
ited availability of large-scale, high-quality speech datasets.
This problem is even more pronounced when dealing with noisy
code-mixed settings with different grapheme vocabularies. This
paper proposes a novel ASR system for low-resource noisy
speech code mixed with Indian languages. Our approach in-
volves fine-tuning pre-trained models using text transliterated
to Devanagari and mapping similar-sounding characters into
one character group. Experiments show the model’s effec-
tiveness for low-resource Indian languages, including noisy,
code-mixed, and multilingual settings. The approach outper-
forms several baseline models and demonstrates the potential
for adapting state-of-the-art ASR models to new languages with
limited resources. The proposed system has been deployed in
production, where call centers use it to transcribe customer calls.
Index Terms: speech recognition, low-resource, multilingual,
code-mix, noisy speech.

1. Introduction

Indian languages are spoken by a significant portion of the
world’s population.1 However, the limited availability of large-
scale, high-quality annotated speech datasets hinders the devel-
opment of reliable Automatic Speech Recognition (ASR) sys-
tems for these languages. This challenge becomes even more
difficult in the noisy code-mixed setting, where multiple lan-
guages are involved, and recordings are noisy. Code-mixing is
prevalent in Indian settings, especially with language pairs like
Hindi and English (known as Hinglish). Code-mixing refers to
the seamless mixing of two or more languages within a single
utterance [1]. On the technology side, the introduction of trans-
formers and self-supervision mechanisms in ASR models has
led to significant improvements in the performance of ASR sys-
tems like Whisper [2], Wav2Vec 2.0 [3], AI4Bharat [4], and
Vakyansh [5], compared to previous systems like Kaldi [6].
Self-supervision along with the attention mechanism (in trans-
formers [7]) allows the model to learn from a massive amount
of unlabelled data that significantly increases the model’s per-
formance even if the model is fine-tuned on a relatively small
dataset. With these techniques, models like Wav2Vec 2.0 [3]
can achieve state-of-the-art performance onASR tasks. On stan-
dard datasets like LibriSpeech [8], it can achieve results compa-
rable to humans.

This paper proposes novel methods for improving code-
mixed multilingual Indic language ASR systems using limited

1https://en.wikipedia.org/wiki/List_of_languages_
by_number_of_native_speakers

data. Our approach involves transliterating text from multiple
code-mixed high and low-resource languages into a common
writing system based on the Indian script - Devanagari script.2
This is followed by a grouping of similar-sounding characters.
Next, an ASR model is trained on the augmented data. Finally,
a disambiguation pipeline is used to recover the native format.
Our proposed approach shows promising results and demon-
strates the potential for adapting state-of-the-art ASR models to
new languages with limited resources. In a nutshell, we make
the following contributions:
• We propose a new ASR system for multilingual low-resource
noisy code-switched Indian speech data.

• We perform extensive experiments with the proposed tech-
niques in various settings, including noisy practical settings.
We show that the proposed model has competitive perfor-
mance across various settings, thus pointing towards the gen-
eralization capabilities of the approach. The proposed model
has been deployed in production and is currently being used
by many customer-facing call centers.

2. Related Work

Various researchers have recently developed models and tech-
niques for ASR for low-resource and code-mixed languages
[9, 10, 11, 12, 13]. For example, [4] have proposed an ap-
proach for developing ASR systems for low-resource languages
using data augmentation and transfer learning techniques. The
evaluation findings demonstrate substantial gains in ASR accu-
racy and resilience for various languages with limited resources.
[14] proposed a novel grapheme-to-phoneme (G2P) model for
code-mixed speech synthesis termedMixlingual, that employs a
sequence-to-sequence architecture with an attention mechanism
to transition between several languagemodels based on the input
dynamically. Assessment of Hindi-English code-mixed voice
synthesis tasks demonstrates that the proposed Mixlingual tech-
nique outperforms previous state-of-the-art models for synthe-
sized speech’s naturalness and understandability. [15] showed
a single ASR model that can transcribe speech in more than
16,000 hours of audio across 50 distinct languages. The ap-
proach also employed SpecAugment, a novel data augmenta-
tion technique, to boost the model’s resilience to fluctuations in
speech patterns. Results indicate that multilingual training of
ASR models can increase recognition performance, especially
for languages with limited resources. [5] compared the per-
formance of multilingual speech recognition systems to mono-
lingual models with language identification. The authors com-
bined the decoding information from multilingual models for
language identification with monolingual models. The results
showed that the multilingual models outperform the monolin-

2https://en.wikipedia.org/wiki/Devanagari

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

3242 10.21437/Interspeech.2023-757

gual models with the language identification module. [16] pro-
posed a two-step approach - Reduce and Reconstruct. In the
first step (Reduce) acoustically similar graphemes are reduced,
and subsequently, in the second step, a finite state transducer
maps reduced graphemes to original forms. Similarly, [17] pro-
posed Grapheme-to-Grapheme (G2G) model that can convert
graphemes to their corresponding pronunciation sequence. The
proposed approach has better generalization than Grapheme-to-
Phoneme (G2P) model. The proposed approach in this paper
comes close to [16].

3. Data Processing

We experiment with various ASR datasets (§5). We process
each ASR dataset (speech-text data) before feeding it into the
model for training. Here we describe the common data process-
ing steps.

3.1. Audio Processing

Audio files are first converted to the wav file format and re-
sampled to 16kHz. If the original audio is stereo, it is converted
to a mono channel using pydub.3 For audios longer than 15
seconds, webrtcvad4 is utilized to chunk them into smaller seg-
ments based on silences. The resulting audio clips have a dura-
tion between 4 and 15 seconds. This segmentation approach has
two advantages: it enables the processing of smaller audio seg-
ments and ensures that the audio transcript does not get split in
the middle of a word.

3.2. Text Cleaning and Pre-processing

Any non-spoken characters, symbols, or words are eliminated
during the text cleaning and pre-processing step, including all
punctuation marks. Symbols, numbers, and special characters
are converted to their spoken versions; for instance, “@” is tran-
scribed as “at the rate” or “at,” “%” is transcribed as “percent”
or “percentage,” “9” as “nine,” and “90” as “ninety” or “nine
zero” depending on how they are spoken in the audio. This con-
version is performed manually to guarantee that no contextual
information is lost.

3.3. Text Transliteration and Reduction

To have a single ASR model capable of handling all Indic lan-
guages and their code-mixed versions, the character set needs
to be minimized to reduce confusion while preserving the rich
phoneme structure of the language. In order to accomplish this
goal, we leverage the fact that in Indic languages, the pronun-
ciation of a word usually corresponds to its spelling. Conse-
quently, we develop a single representation for phonemes that
sound similar and then transliterate Indic words character by
character into this representation, which we refer to as the Com-
mon Indic Representation. English dictionary words are also
converted to Devanagari script, where “write” would become
“राइट.” This approach addresses the problem of irregularities in
English spelling and pronunciation, including silent letters in
words like “knight”, “tsunami,” and “debt,” as well as the vari-
ations in the spelling of words with similar letter format, such
as “south” and “soup,” “crumb,” and “crumble.” Subsequently,
the Devanagari representation of English words is transliterated
into the Common Indic Representation. The entire process is
done in three steps.

3https://github.com/jiaaro/pydub
4https://github.com/wiseman/py-webrtcvad

1. Transliteration for Indic Words. Initially, a representative
letter is designated for all similar-sounding vowels or conso-
nants across all Indic languages. This is feasible since most
major Indic languages have a one-to-one correspondence be-
tween their spoken and written forms. The representative as-
signment is done separately for half chars and full chars. For
instance:
• Ka group has letters क, ક, ক, ਕ, ಕ, క, க, ക, and क is
marked as their representative.

• Aa group of full chars has lettersआ,આ, আ, ਆ,ಆ,ఆ,ஆ,
ആ, andआ is marked as their representative.

• Aa group of half chars has letters ा, ા, া, ਾ, ಾ, ా, ா, ാ, and ा is
marked as their representative.

The set of representative letters constitutes the character set
for Common Indic Representation. Any Indic word in a given
language is transliterated to the Common Indic Representa-
tion on a letter-by-letter basis. For instance, the wordઅંકુર in
Gujarati and అంకుర in Telugu are transliterated to अंकुर.

2. English Dictionary Word Transliteration. To address the ir-
regularity problem, English words are transliterated into De-
vanagari format based on their pronunciation. For example,
the sentence “I have a red rose” would be manually translit-
erated to “आई हैव अ रेड रोज.” An extensive dictionary con-
taining 40,000 English words with their corresponding De-
vanagari transliterations is maintained and updated regularly
to facilitate the transliteration process. The Devanagari rep-
resentation of the English words is then further converted to
the Indic Common Representation.

3. Reduction. The Indic Common character set is further re-
duced into smaller sets by grouping consonants or vowels
with similar sounds and designating a single letter as their
representative. For instance, श, ष, स are grouped, as are इ
and ई, among others.

Reverse Dictionary. While performing the above steps, a re-
verse dictionary is maintained from a reduced Indic Common
Representation of a word to its native form. For example: िमठाइ
is mapped to िमठाई and મીઠાઈ. Note that the list of native forms
may correspond to different languages.

4. Proposed Architecture

Figure 1 shows the proposed architecture for the ASR system.
During training, the text from multiple code-mixed languages
is transliterated into a common writing system based on the
Devanagari script. As described in §3, the transliterated text
is grouped into characters with similar sounds to create a rich
phonemic representation of the text. The data in the reduced
format is used to fine-tune an ASR system based on Wav2Vec
2.0 model with a 5-gram Ken-LM. The system outputs text in
reduced format (in Indic Common Representation). During test-
ing, a disambiguation pipeline is used to convert the output text
into its native format. We describe the details of each of the
components next.

4.1. Fine-Tuning Details

The fine-tuning phase for all experiments utilizes the Fairseq
toolkit [18] and the open-source Indic-Wav2Vec-Large pre-
trained model provided by AI4Bharat,5 trained on 17k hours
of audio and covering 40 languages. Fine-tuning and infer-
ence are combined with a 5-gram Statistical Language Model
for better results. Fairseq wav2vec dictionary and lexicon files

5https://ai4bharat.iitm.ac.in/indicwav2vec

3243

Figure 1: The proposed architecture

are built using the train and validation sets and optionally use-
case-specific text corpus. The statistical 5-gram languagemodel
used for training and benchmarking is built with KenLM,6 with
LM tokens in reduced Indic Common Representation format for
fine-tuning and native format for inference. Domain-specific
data is trained using the corresponding domain corpus. In con-
trast, the training data and other sources, such as Google blogs,
are used for general training (details in Appendix A7).

4.2. Disambiguation and Inference

The ASR system produces the output text in reduced format;
the disambiguation pipeline is used to convert all words to
their native format using a native LM and reverse dictionary
(dict) (§3). For an output sentence S = [w1,w2....,wN], an
initial score of 1 is assigned to all reduced words. The ini-
tial mapping of scores for sentence S becomes [{word:w1,
score:1}....,{word:wN , score:1}]. The overall word disam-
biguation is achieved through the following pipeline (described
below): Native Possibilities ! Language Restriction ! Lan-
guage Count! LM Probabilities! Final Output.
• Native Possibilities: For each word (in reduced format) in the
output sentence, the corresponding native words are retrieved
from the reverse dictionary, and a new score for each word is
calculated as follows. For a reverse dictionary, R denoted by
R = [{w1: [w(N)

1,1,w(N)
1,M1

]}......,{wR:[w(N)
R,1 , ..., w

(N)
R,Mr

]}],
where for a reduced word wi we have Mi native words
w

(N)
i,1 ,, w

(N)
i,Mi

. The score for each native word possibil-
ity (corresponding to reduced word wi) is 1/Mi. Hence, wi

= [{word:w(N)
i,1 , score:1/Mi}....,{word:w(N)

i,Mi
, score:1/Mi}]

and so on.
• Language Restriction: In a sentence, S, for each reduced
word, a non-overlapping window (centered at the word) of
100 is taken, and a set of all native words (coming from the
neighboring reduced words in the window) corresponding to
the topK languages is selected. If there are n possible native
words for a given reduced word, andm belongs to a language
L, then the language score forL is computed asm/n. Scores
are computed for each language across all native words, and

6https://github.com/kpu/kenlm
7Appendix available at: https://tinyurl.com/3h9pbvkj

Table 1: Dataset Statistics: Numbers of hours of audio.

Dataset Languages Train Dev Test Notation

MUCS Hindi 92.2 2.85 5.49 MS-H
Marathi 91.08 2.81 0.667 MS-M
Tamil 38.8 1.2 4.4 MS-TA
Telugu 38.8 1.2 4.3 MS-TE
Gujarati 38.8 1.2 5.00 MS-G

GRAMVAANI Hindi 100.0 5.00 3.00 GV-H

Call Center (CC) C-HE 136.04 4.29 2.86 C-HE
C-HTKE 55.67 1.76 1.17 C-HTKE

the top K languages are chosen based on the final scores.
The native words of these top K languages are selected, and
scores for individual possibilities are recalculated using the
same method as in the Native Possibilities procedure. For all
experiments, the value of K is set to 3.

• Language Count: Next, the score of each potential native
word is modified based on the languages in its vicinity. A
context window (centered at the reduced word in the sen-
tence) of size 17 is selected, and the score for each language
is calculated based on potential native words of that language
within that window. The score of a language is the sum of
scores of all potential native words in that language within
the window. The score of each native word is then multi-
plied by its respective language score for every reduced word.
For instance, if a native possibility,w(N)

i,1 corresponding to re-
duced wordw1 belongs to Language Lwith score SL then its
new score would be Score

w
(N)
i,1

*SL. Subsequently, the new
scores are normalized.

• Language Model Probability: After getting the weighted lan-
guage count scores for various native words across all re-
duced words, a pre-trained language model is used to assign
a score to all possible combinations of native words across
a window. For this, a default half window size of 2 with a
max size of 5 is chosen. Then potential left and right sen-
tences (within the half-window size boundary) for every na-
tive word corresponding to a reduced word are constructed,
and the language model is used to assign a probability score,
ScoreLMsent to the overall sentence. Then the overall lan-
guage model weighted score throughout the window is calcu-
lated as ScoreLMsent*Scoreleft*Scoreright and the maxi-
mum of these scores is considered and multiplied to the score
of the native word. These scores are further normalized by the
total score across the list of native possibilities for the current
reduced word.

• Final Output After the computation of this final score, the
native words with the highest weighted scores are selected,
corresponding to each reduced word.

We also explain the entire disambiguation pipeline with the help
of an example in Appendix B.

5. Experiments

We experimented with three settings: multilingual audio, code-
switched/mixed audio, and noisy audio.

5.1. Multilingual Audio

A single multilingual model is more convenient and efficient to
maintain and release in production than having multiple models
for each language. We experimented withMUCS (Multilingual
and Code-Switching ASR Challenges for Low Resource Indian

3244

Table 2: WER different versions of the model on various
datasets. The baseline results are on the test set.

ASR Model Dataset Baseline Validation Test

M0 MS-H 32.73 6.42 12.48
MS-M 29.04 5.22 13.24
MS-TA 34.09 13.07 19.54
MS-TE 31.44 14.44 21.33
MS-G 26.15 13.90 18.15

M1 GV-H 27.47 16.57 24.35

M2 C-HE 61.95 21.7 23.9

M3 C-HTKE 70.87 29.8 31.32

Languages) [19] ASR dataset for this setting. MUCS contains a
dataset for six different Indian languages for multilingual ASR
tasks: Hindi, Marathi, Odia, Telugu, Tamil, and Gujarati. For
this setting, a single lexicon file is built for all languages, and a
single language model (based on corpora from all languages) is
used.

5.2. Code-Switch and Code-Mixed Audio

Technically speaking, there is a subtle difference between code-
switching and code-mixing [1]; however, we group these cate-
gories into one for practical purposes. Hindi and other regional
languages are frequently mixed with English in India. English
words can be inserted in the middle of sentences with the same
grammar structure as the regional language, or parts of sen-
tences can be made up of words from multiple languages, each
with its grammar structure. We used a propriety dataset from
the call-center call recordings for this setting. We refer to this
dataset as Call Center (CC) dataset. We did a project on ASR
with various companies and curated CC data from them; they
(as a part of the standard procedure) recorded telephonic calls
from call centers in several commercial settings correspond-
ing to different domains (e.g., Education, Medical, Tourism,
etc.). All required prior permissions were taken from the com-
pany (and corresponding individuals) during the process. Two
Call Center datasets are curated; these closely reflect the chal-
lenges posed by noisy, multilingual, and code-mixed speech.
The first dataset, called C-HE, consists of a multidomain dataset
in Hinglish, a code-mixed language that combinesHindi and En-
glish. The second dataset, called C-HTKE, consists of four lan-
guages, including Hindi, Tamil, Kannada, and English, and is
also noisy and code-mixed. Appendix C provides more details
about the CC dataset and annotations.

5.3. Noisy Real-World Audio

The vast majority of Wav2Vec-2.0-based model benchmarks
are based on clean datasets. However, how well such models
perform on practical noisy audio settings needs to bemade clear.
Consequently, to find out the generalization capabilities of our
model, we experimented with GRAMVAANI [20] dataset. It
comprises telephone quality noisy speech data in Hindi; it in-
cludes regional/dialectal variations of Hindi. It also contains
metadata for the recordings, including location, dialect, emo-
tion, and audio quality. The statistics of datasets are given in
Table 1.

6. Results and Discussion

We used the standard evaluation metric of WER (Word Error
Rate). Table 2 shows the results for various datasets using dif-
ferent models.

6.1. Results and Analysis

We tried different versions of our proposed architecture. M0

is our architecture fine-tuned (§4) on MUCS train set. Simi-
larly, M1, M2, and M3 are fine-tuned on GRAMVAANI, C-
HE, and C-HTKE data. We compare our system against the
test performance of baseline systems proposed for each dataset.
For the MUCS dataset, we use Hybrid DNN-HMM model [19]
as the baseline, CNN-TDNN ASR based on Kaldi [6] toolkit is
used as the baseline for GRAMVAANI. For the CC dataset, the
baseline models come from Indian Language ASR: Vakyansh
(Wav2Vec based) [5]. We report validation and test data WER.
As shown in Table 2, for MUCS, our approach (on the Test set)
achieves an average WER of 16.95 across all languages com-
pared to 30.69 WER for the baseline. Our method performs
better across all languages. Similarly, our system outperforms
baseline models on other datasets by a large margin. Notably,
for the CC dataset (noisy and code-mixed speech), our system
(23.9, 31.32) outperforms baseline models (61.95, 70.87) by
a huge margin. Both MUCS8 and GRAMVAANI9 maintain a
leaderboard; on both the datasets, at the time of writing this pa-
per, our model performs better than the SOTA.We also compare
againstWav2Vec-basedmodels in Appendix E. One of the chal-
lenges that we have faced is the need for domain-specific data.
In some specialized domains, e.g., medical, banking, and legal,
the language usedmay be very technical and full of jargon. After
fine-tuning the acoustic model, we observed that adding data to
the language model improves the transcription quality. In cer-
tain conditions, out-of-vocabulary words are externally added
to the language model and acoustic model vocab to remove the
need for additional fine-tuning.

6.2. Limitations

For the CC dataset, we also performed domain (banking, edu-
cation, medical, and tourism) specific analysis (details in Ap-
pendix D). We observed that the proposed ASR system strug-
gles in shouting conditions; shouting distorts speech, making it
difficult for the model to accurately transcribe the audio as seen
for the BFSI domain compared to the Edtech domain, where
the calls are generally less noisy. Another limitation of our ap-
proach is that the transliteration step is rule-based. New rules
would need to be incorporated to include new languages (e.g.,
non-Indian languages). Hence, in the future, we would like to
develop an automated transliteration module to address this gap.

7. Conclusions

In this paper, we proposed an ASR system for multilingual,
code-mixed, and noisy settings. The system has SOTA per-
formance on existing benchmarks, and our experiments show
the generalization capability of the system. The proposed sys-
tem has been successfully deployed in commercial settings with
positive responses. In the future, we plan to improve the system
further, addressing the mentioned limitations.

8https://navana-tech.github.io/MUCS2021
9https://sites.google.com/view/

gramvaaniasrchallenge

3245

8. References

[1] S. Thara and P. Poornachandran, “Code-mixing: A brief sur-
vey,” in 2018 International conference on advances in comput-
ing, communications and informatics (ICACCI). IEEE, 2018,
pp. 2382–2388.

[2] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak su-
pervision,” arXiv preprint arXiv:2212.04356, 2022.

[3] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 12 449–12 460.
[Online]. Available: https://proceedings.neurips.cc/paper/2020/
file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf

[4] T. Javed, S. Doddapaneni, A. Raman, K. S. Bhogale, G. Ramesh,
A. Kunchukuttan, P. Kumar, and M. M. Khapra, “Towards
building asr systems for the next billion users,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 10, pp. 10 813–10 821, Jun. 2022. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/21327

[5] H. S. Chadha, P. Shah, A. Dhuriya, N. Chhimwal, A. Gupta,
and V. Raghavan, “Code switched and code mixed speech
recognition for indic languages,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.16578

[6] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi Speech
Recognition Toolkit,” in IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding. IEEE Signal Processing
Society, Dec. 2011, iEEE Catalog No.: CFP11SRW-USB.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Atten-
tion is all you need,” in Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, Eds., vol. 30. Curran Associates, Inc., 2017. [On-
line]. Available: https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[8] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206–5210.

[9] J. Chi and P. Bell, “Improving code-switched asr with linguistic
information,” in Proceedings of the 29th International Conference
on Computational Linguistics, 2022, pp. 7171–7176.

[10] B. Yan, C. Zhang, M. Yu, S.-X. Zhang, S. Dalmia, D. Berrebbi,
C. Weng, S. Watanabe, and D. Yu, “Joint modeling of code-
switched and monolingual asr via conditional factorization,” in
ICASSP 2022-2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp.
6412–6416.

[11] I. Hamed, N. T. Vu, and S. Abdennadher, “Arzen: A speech cor-
pus for code-switched egyptian arabic-english,” in Proceedings
of the Twelfth Language Resources and Evaluation Conference,
2020, pp. 4237–4246.

[12] S. Sitaram, K. R. Chandu, S. K. Rallabandi, and A. W. Black, “A
survey of code-switched speech and language processing,” arXiv
preprint arXiv:1904.00784, 2019.

[13] S. Dalmia, Y. Liu, S. Ronanki, and K. Kirchhoff, “Transformer-
transducers for code-switched speech recognition,” in ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2021, pp. 5859–5863.

[14] S. Bansal, A. Mukherjee, S. Satpal, and R. Mehta, “On Improv-
ing Code Mixed Speech Synthesis with Mixlingual Grapheme-
to-Phoneme Model,” in Proc. Interspeech 2020, 2020, pp.
2957–2961.

[15] V. Pratap, A. Sriram, P. Tomasello, A. Hannun, V. Liptchinsky,
G. Synnaeve, and R. Collobert, “Massively multilingual asr:
50 languages, 1 model, 1 billion parameters,” 2020. [Online].
Available: https://arxiv.org/abs/2007.03001

[16] A. Diwan and P. Jyothi, “Reduce and Reconstruct: ASR for Low-
Resource Phonetic Languages,” in Proc. Interspeech 2021, 2021,
pp. 3445–3449.

[17] D. Le, T. Koehler, C. Fuegen, andM. L. Seltzer, “G2g: Tts-driven
pronunciation learning for graphemic hybrid asr,” in ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020, pp. 6869–6873.

[18] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grang-
ier, and M. Auli, “fairseq: A fast, extensible toolkit for sequence
modeling,” in Proceedings of NAACL-HLT 2019: Demonstra-
tions, 2019.

[19] A. Diwan, R. Vaideeswaran, S. Shah, A. Singh, S. Raghavan,
S. Khare, V. Unni, S. Vyas, A. Rajpuria, C. Yarra, A. Mittal,
P. K. Ghosh, P. Jyothi, K. Bali, V. Seshadri, S. Sitaram, S. Bharad-
waj, J. Nanavati, R. Nanavati, K. Sankaranarayanan, T. Seeram,
and B. Abraham, “Multilingual and code-switching asr challenges
for low resource indian languages,” Proceedings of Interspeech,
2021.

[20] A. Bhanushali, G. Bridgman, D. G, P. Ghosh, P. Kumar, S. Kumar,
A. Raj Kolladath, N. Ravi, A. Seth, A. Seth, A. Singh, V. Sukha-
dia, U. S, S. Udupa, and L. V. S. V. D. Prasad, “Gram Vaani
ASRChallenge on spontaneous telephone speech recordings in re-
gional variations of Hindi,” in Proc. Interspeech 2022, 2022, pp.
3548–3552.

3246

