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Abstract
Speech representation learning approaches for non-semantic
tasks such as language recognition have either explored super-
vised embedding extraction methods using a classifier model
or self-supervised representation learning approaches using raw
data. In this paper, we propose a novel framework of combining
self-supervised representation learning with the language label
information for the pre-training task. This framework, termed
as Label Aware Speech Representation (LASR) learning, uses
a triplet based objective function to incorporate language labels
along with the self-supervised loss function. The speech repre-
sentations are further fine-tuned for the downstream task. The
language recognition experiments are performed on two pub-
lic datasets – FLEURS and Dhwani. In these experiments, we
illustrate that the proposed LASR framework improves over
the state-of-the-art systems on language identification. We
also report an analysis of the robustness of LASR approach to
noisy/missing labels as well as its application to multi-lingual
speech recognition tasks.
Index Terms: speech representation learning, supervision and
self-supervision, language identification.

1. Introduction
The conventional approach for deriving speech representations
for non-semantic speech tasks, such as speaker and language
recognition, involved the use of training deep neural models
with a statistics pooling layer. Some of the popular methods
in this direction include d-vectors [1] and x-vectors [2], where
a deep neural model is trained to classify the speaker/language
labels on a large corpus of supervised data. However, recent
trends in speech processing has seen a paradigm shift towards
self-supervision based representation learning, mirroring the ef-
forts in computer vision [3] and natural language processing [4].
Some popular examples of such approaches include contrastive
predictive coding (CPC) [5], wav2vec family of models [6, 7],
and hidden unit BERT (HuBERT) [8]. These methods primar-
ily rely on learning speech representations at the frame-level
with its impact reported on semantic tasks such as low-resource
speech recognition [8, 9] or zero resource spoken language
modeling [10]. These representations have also been investi-
gated for speaker and language recognition tasks [11] through
various benchmarks such as SUPERB [12] and NOSS [13].

In many learning paradigms, it is plausible to have portions
of pre-training data along with the corresponding meta-data. In
the broad spectrum of representation learning, where supervised
and self-supervised frameworks constitute the two-ends of the
spectrum, we hypothesize that a combination of supervision and
self-supervision based methods may be more optimal than ei-
ther of the two frameworks in isolation, for scenarios where

parts of the pre-training have additional meta-data in the form of
labels. In this paper, we propose a framework for Label Aware
Speech Representation learning (LASR) for such scenarios. To
the best of our knowledge, this is the first attempt to combine
label information with a self-supervision loss for non-semantic
speech tasks. The contributions from this work are as follows.

1. We propose LASR, a framework for incorporating label in-
formation in self-supervised speech representation learning.

2. We demonstrate the effectiveness of LASR for language
identification task and establish its efficacy even with miss-
ing and noisy labels.

3. Our findings demonstrate that inclusion of language infor-
mation in the pre-training phase results in state-of-art-results
on the FLEURS dataset [14].

2. Related Work
Supervised Learning: Deep learning methods for non-
semantic speech tasks initially explored speech recognition
models in the unsupervised i-vector framework [15]. Further,
the embeddings derived from a classifier model, trained on
large amounts of supervised pre-training data, showed promis-
ing results for speaker [1] and language recognition [16]. The
initial architecture based on time-delay neural network (TDNN)
[2] has since been improved with factorization [17], residual
networks [18] and more recently with channel attention based
TDNN [19]. Most of these approaches use a pooling layer
to convert frame level representations to an utterance level
embedding followed by a cross-entropy based classification
objective. However, our work investigates the combination of
self-supervision objectives along with the supervised labels.

Speech Self-Supervised Learning: Prior research in the field
of speech self-supervised learning can largely be classified
into two major categories: contrastive and predictive. The
contrastive approaches learn by maximizing the similarity of
an anchor with the positive samples, while simultaneously min-
imizing its similarity with the negative samples. The class of
wav2vec models [6, 20] fall in this category. On the other hand,
predictive methods are based on masked language modeling
(MLM) objective [4]. The examples include Discrete-BERT
[21], w2v-BERT [7], HuBERT [8], and BEST-RQ [22]. Our
proposed framework enables integration of label information in
both categories of methods.

Non-Semantic Speech Representations: For tasks such
as language identification, speaker diarization, and emotion
detection, it is essential to also capture the non-semantic
aspect of speech. TRILL [13] utilizes temporal proximity as
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Figure 1: Overview of LASR framework. Given a batch of multilingual speech samples, for each sample xi, LASR utilizes a speech
encoder (f ) to obtain frame-level representations zi1, z

i
2, ..., z

i
t . These are used for computing self-supervised loss and are fed to a

pooling function (g) to derive utterance-level embedding hi. The language labels of samples and hi’s are used to compute LASR loss.

supervision signal to learn non-semantic representation, with
promising results on NOSS (non-semantic speech) bench-
mark. Further, methods such as FRILL [23] and TRILLsson
[24] have enhanced the performance and efficiency of these
models. Another approach named COLA [25] modifies the
negative sampling scheme to learn more general purpose audio
representation. All these works are specifically designed for
contrastive techniques, whereas LASR can be integrated with
any self-supervised speech representation learning method.

Joint learning: Talnikar et. al. [26] explored the combi-
nation of supervised (connectionist temporal cost (CTC)) and
self-supervised (contrastive prediction loss (CPC)) losses for
speech recognition. Similarly, UniSpeech [27] used CTC label-
ing and phonetically-aware contrastive learning in a multi-task
learning framework. Bai et. al. [28] used the self-supervised
MLM loss and the speech recognition loss for a multi-lingual
speech recognition system. However, all these approaches learn
frame-level representations for a semantic task. In our work,
the LASR framework combines utterance-level label supervi-
sion with frame-level self-supervision.

3. LASR Framework
A comprehensive illustration of the LASR framework is de-
picted in Figure 1. A self-supervised speech encoding model
f : x → Z , such as wave2vec-2.0 [6] or w2v-BERT
[7], transforms a raw audio waveform X into the frame-level
speech representations Z = [z1,z2, ..., zT ]. In our pro-
posed LASR framework, the pre-training dataset is denoted as
D = {(X 1, l1), (X 2, l2), ..., (Xn, ln)}, where each speech ut-
terance X i is accompanied by its corresponding language label
li. The remaining unlabeled samples will solely be utilized for
optimizing the self-supervised objective.

Subsequently, we employ an aggregation function g : Z →
h to obtain an utterance level embedding h = g(Z). Here, g
can, in general, take the form of a neural network such as LSTM
or an attention model [29]. In our case, g is an average pooling,

i.e., h = g(Z) =
1

T

∑
t zt.

For an anchor speech utterance X i with aggregate repre-
sentation hi and language label li, we select a positive and neg-
ative sample: X+

i and X−i such that l+i = li and l−i 6= li. We

use the triplet-loss objective, as proposed in [30], i.e.,

Ltri =
∑

i

max
[
0, γ + d(hi,h

+
i )− d(hi,h

−
i )
]
, (1)

where γ is the margin and d(·, ·) is the distance metric em-
ployed. In this work, we use angular distance as the distance
metric. We also explore the hard triplet mining strategy [31, 32],
where the most distant positive and closest negative sample
within the mini-batch are selected to form the triplet.

Lhard =
∑

i

max[0, γ+max
j∈i+

d(hi,hj)−min
j∈i−

d(hi,hj)] (2)

Here, j ∈ i+ denotes the set of utterances in the mini-batch that
have the same label lj = li and j ∈ i− denotes the set of utter-
ances with a different label, i.e., lj 6= li. The total loss function
used in the proposed LASR approach is given by,

LLASR = LSSL + λ · Lhard. (3)

Here, LSSL is the loss corresponding to the self-supervised
speech encoding method f and λ decides the trade-off between
the SSL objective and hard-triplet objective. In our experi-
ments, we find that having the SSL objective is crucial for
achieving the best language recognition performance. In Sec-
tion 6, we also assess the significance of altering the parameter
λ. In addition to the triplet loss (Eq. 3), we also examine gen-
eralized end-to-end loss [33].

Lge2e =
∑

i

1−σ(max
j∈i+

d(hi,hj))+σ(min
j∈i−

d(hi,hj)). (4)

4. Experimental Setup
4.1. Dataset

Pre-training Data: In our experiments, we employ a large set
of open source speech data for pre-training, totaling about 429k
audio hours. This consists of 372k hours of speech data across
23 languages from VoxPopuli dataset [34], 50k hours of speech
from 25 languages in Common Voice dataset [35], 50k hours
of read speech in 8 European languages from Multilingual Lib-
riSpeech (MLS) corpus [36], and 1000 hours of telephone con-
versation data across 17 African and Asian languages from BA-
BEL dataset [37]. Overall, this combined dataset has speech
utterances from 75 languages.
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FLEURS Dhwani

Method O (48) NO (54) Overall O (5) NO (17) Overall

Acc Acc Acc F1 EER Acc Acc Acc F1 EER

wav2vec 2.0 [6] 84.8 72.2 78.2 76.3 1.1 77.6 47.6 56.0 41.1 15.9
w2v-BERT [7] 87.7 69.6 78.0 77.7 0.5 78.8 49.9 58.0 42.6 15.4
BEST-RQ [22] 86.8 65.6 75.8 73.3 1.2 76.2 46.4 54.7 39.8 16.9

LASR + wav2vec 2.0 89.6 74.8 81.9 79.9 0.7 78.5 50.1 58.1 42.5 15.2
LASR + w2v-BERT 88.9 74.3 81.3 80.4 0.5 78.9 50.6 58.6 42.8 15.9
LASR + BEST-RQ 90.6 73.4 81.6 79.7 0.5 77.0 50.8 58.2 43.2 16.1

Table 1: Language identification accuracy (%), macro-F1 and equal error rate (EER) for various approaches. O stands for languages
that overlap with the pre-training data and NO are the non-overlapping languages. In parenthesis, we report the number of classes in
each category. We find that methods trained with the LASR objective achieve better performance. Refer to Section 5 for details.

Evaluation Data: In our experiments, we employ FLEURS
[14] and Dhwani [38] datasets for spoken language identifica-
tion. Additionally, we utilize Multilingual Librispeech dataset
[36] for Automatic Speech Recognition (ASR). The FLEURS
dataset consists of speech data for 102 languages, with approxi-
mately 12 hours of speech per language, derived from translated
versions of 2009 English Wikipedia sentences. All the transla-
tions are human generated with training, development and test
containing 1500, 150 and 359 sentences respectively. Each sen-
tence was spoken by at least 3 native speakers of the language.

The Dhwani dataset encompasses multilingual speech data
from 40 Indian languages, downloaded from YouTube and the
news platform newsonair. For our experiments, we use only
the publicly accessible YouTube split, which consists of 12.6k
hours of speech in 22 Indian languages. Unlike the FLEURS
dataset, the Dhwani dataset is highly noisy and also contains
substantial amounts of code-mixing, which challenges the label
information based learning in the proposed LASR method.

4.2. Baseline systems

We compare LASR framework with several other established
benchmarks namely, (i) wav2vec-2.0 (w2v) model [6] pre-
trained with SSL contrastive loss, (ii) w2v-BERT [7] model,
trained using the SSL MLM loss, and (iii) BEST-RQ [22]
model, which uses a random quantizer with the MLM loss.
Since the LASR approach is agnostic to the choice of the SSL
objective function, we explore the combination of wav2vec-2.0,
w2v-BERT and BEST-RQ model with the hard-triplet based
LASR objective. All models are fine-tuned on the respective
training split of the downstream task before evaluation.

Implementation details: Most of the hyper-parameters are di-
rectly adopted from prior works [7, 22]. All the SSL baseline
systems are pre-trained for 1.5M epochs. For LASR training,
the pre-trained SSL model at 1M epochs is used as initializa-
tion, followed by 0.5M steps of training with the LASR objec-
tive. All the models are fine-tuned on the supervised training
data for an additional 50k epochs, with a batch size of 64. We
choose λ from {4, 8, 16}. The Adam optimizer [39] is used in
conjunction with a Transformer learning rate scheduler [4] that
has 40k warm-up steps. The learning rate is increased to 6e−4,
followed by an inverse square root decay. We report mean of
three runs for all the results.

Initialization FLEURS Dhwani

Acc F1 EER Acc F1 EER

Random 52.8 46.5 2.1 55.3 25.1 14.9
BEST-RQ 81.4 73.4 0.9 61.9 30.0 17.9
+ LASR 83.8 73.4 0.9 62.2 34.3 18.0

Table 2: Language recognition performance in supervised
case. Fully supervised models have higher macro-F1 and EER.

5. Results
The language recognition performance is measured using ac-
curacy, equal error rate (EER) and macro-F1 score. These re-
sults are reported in Table 1. The languages in the test set
(FLEURS/Dhwani) are split into two categories - a) the set of
languages which overlap with the ones in the pre-training (de-
noted as O, 48 classes in the FLEURS dataset and 5 classes in
the Dhwani dataset), and b) the set of languages which do not
have any overlap with the set of languages in the pre-training
data (denoted as NO, 54 classes in the FLEURS dataset and
17 classes in the Dhwani dataset). Further, the overall results
are also reported. The following are the key takeaways from the
results reported in Table 1.

• On the FLEURS dataset, the LASR approach improves the
BEST-RQ model relatively by 7.7%, 8.7%, and 58.3% in
terms of accuracy, F1 and EER metrics, respectively. Sim-
ilarly, on Dhwani dataset, the relative improvements from
LASR for BEST-RQ are 6.4%, 8.5%, and 5.0% on the above
metrics. This trend is consistent across other pre-training
methods as well. Thus, LASR framework improves over the
baseline SSL results for both the datasets and for all the pre-
training models (wav2vec-2.0, w2v-BERT and BEST-RQ).

• The improvements observed for the LASR approach are also
consistent with the overlap and the non-overlap subsets of the
test data, and on all the three metrics reported.

• For all the systems compared, the performance on the over-
lap set is consistently better than the non-overlap set. This
indicates that, even when the pre-training objective did not
explicitly use language labels (baseline SSL approaches), the
language information is implicitly captured by the models.

Fully-Supervised Setting: In Table 2, we report the perfor-
mance for the scenario where a supervised pre-training is per-
formed using the combined data of all the languages (pre-
training and training data) with the cross-entropy loss. The
label set is the union of the languages in the pre-training data
and the fine-tuning data. The supervised model architecture is
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Method Accuracy

MLM 75.8
Hard-Triplet 74.3
MLM + Triplet (Eq. 1) 75.1
MLM + GE2E (Contrastive) (Eq. 4) 76.2
MLM + Hard-Triplet (Eq. 2) 80.4

Table 3: Language identification accuracy with various loss
functions. Hard-triplet loss performs best among all.
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Figure 2: Accuracy for different choice of λ in LASR objective
(Eq. 3). Slightly higher value of λ(= 16) is beneficial.

identical to the SSL and LASR models reported in Table 1. We
also experiment with three different initialization choices for
this supervised model - i) random initialization, ii) BEST-RQ
model trained with SSL, and iii) BEST-RQ model trained with
LASR objective. Our findings show that, on both the datasets,
the fully-supervised setting does not achieve satisfactory results
without weight initialization using a pre-trained model. While
the accuracy of the supervised model improves over the SSL
and LASR models in Table 1, EER and F1 scores are substan-
tially worse for the supervised models. Nevertheless, the perfor-
mance in this setting also improves with LASR initialization.

6. Discussion
Effect of different optimization objectives - Table 3 compares
various supervised loss functions. These experiments used the
BEST-RQ [22] model evaluated on the FLEURS dataset. The
first two experiments of Table 3 use only the MLM loss (SSL
loss) or only the supervised loss (Hard-triplet loss). The re-
maining experiments use the combined LASR loss (Eq. 3). As
seen here, the hard-triplet loss improves over other choices of
semi-hard triplet loss or GE2E loss.
Choice of supervised loss weight λ - For the hard-triplet loss
in the LASR objective function (Eq. 3), we have experimented
with different choices of λ. These results are reported in Fig. 2.
The optimal choice of λ is found to be 16, which indicates that
a higher weight for the supervised component is beneficial for
the language recognition performance. However, a larger value,
for example, λ = 32, degrades the performance.
Pre-training with missing/noisy labels - All experiments re-
ported thus far used the language label information for the en-
tire pre-training data. We experiment with the robustness of the
LASR approach for cases where the label information is either
missing or noisy. For these experiments reported in Fig. 3, we
assume p% of the pre-training data to either have missing la-
bels or have noisy labels (randomly corrupted to other language

Method Languages Avg

de en es fr it nl

w2v-BERT 4.0 6.2 4.0 4.7 8.9 10.6 7.2
+ LASR 4.0 6.2 4.8 4.8 8.9 10.0 7.2

BEST-RQ 3.9 6.2 3.8 4.8 8.8 9.3 7.0
+ LASR 4.1 6.2 4.3 4.8 9.0 9.6 7.1

Table 4: WER (%) for ASR on Multilingual LibriSpeech.
Adding the non-semantic LASR objective during pre-training
does not degrade performance on semantic tasks such as ASR.

Percentage of noisy/missing samples 
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0 25 50 75
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Baseline (w/o LASR)
75.8

Figure 3: Pre-training with missing or noisy labels. LASR is
robust to missing and noisy language information in the data.

labels in pre-training set). As expected, the language recogni-
tion performance degrades as p increases. However, even when
75% of the pre-training data labels are missing, LASR is sig-
nificantly better than the baseline approach. The experiments
highlight that the LASR approach can also yield performance
improvements on pre-training data with noisy/missing labels.
Impact on downstream ASR tasks - In this section, we fine-
tune LASR models on a semantic task, namely ASR. In par-
ticular, we run experiments for multilingual ASR on the MLS
dataset. We follow a similar setup for ASR fine-tuning as was
done in [22]. To be more specific, we use the RNN-transducer
model [40], where the decoder uses unidirectional LSTM. We
do not employ shallow fusion with an external language model.
The ASR WER (%) results are reported in Table 4. As seen in
this table, the LASR based objective does not degrade the over-
all ASR performance even when the label information used in
the LASR loss is an utterance-level non-semantic label. Thus,
the representations learned using the LASR approach improve
the language recognition tasks without any degradation on se-
mantic tasks such as ASR.

7. Conclusion
In this paper, we introduce a method for enhancing self-
supervised speech representation learning by incorporating
non-semantic language label information. Our proposed ap-
proach, Label Aware Speech Representation (LASR) learn-
ing, utilizes a triplet-based objective in addition to the self-
supervised loss function. The results from language recogni-
tion experiments demonstrate that the LASR approach provides
substantial overall improvements, particularly on subsets of test
data that do not overlap with pre-training languages. Addition-
ally, experiments on the automatic speech recognition (ASR)
task indicate that the LASR model produces speech representa-
tions that do not compromise performance for semantic tasks.
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