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Abstract
We consider the problem of few-shot spoken word classifica-
tion in a setting where a model is incrementally introduced to
new word classes. This would occur in a user-defined keyword
system where new words can be added as the system is used.
In such a continual learning scenario, a model might start to
misclassify earlier words as newer classes are added, i.e. catas-
trophic forgetting. To address this, we propose an extension to
model-agnostic meta-learning (MAML). In our new approach,
each inner learning loop—where a model “learns how to learn”
new classes—ends with a single gradient update using stored
templates from all the classes that the model has already seen
(one template per class). We compare this method to OML (an-
other extension of MAML) in few-shot isolated-word classifica-
tion experiments on Google Commands and FACC. Our method
consistently outperforms OML in experiments where the num-
ber of shots and the final number of classes are varied.
Index Terms: continual learning, few-shot learning, spoken
word classification, meta-learning.

1. Introduction
Imagine a speech system that a user can teach new commands
by providing it with just a few examples per word class. To
start out with, the user might provide the system with exam-
ples of the words “sing”, “open” and “close”, and with just a
handful of support examples, the system should be able to cor-
rectly classify new test inputs. (This should work irrespective
of the language of the user.) In contrast to conventional speech
recognition systems that are trained on thousands of hours of
examples, such a system would be few-shot. Inspired by the
observation that humans can learn new words from very few
examples, a number of studies in machine learning have started
to look at this problem of few-shot word classification [1, 2, 3].

But now imagine that, as the user is using the system, they
want to add more words to the system, e.g. “turn” and “give”.
As more and more words are added, the system might start to
misclassify words that it learned earlier—the problem of catas-
trophic forgetting [4, 5]. The combination of dynamic envi-
ronments, limited support examples used for training, and con-
tinual learning make this task a major challenge. While other
studies have look at the few-shot problem [1, 6], the proposed
methods do not deal with the continual learning problem. In this
paper we propose a new approach for few-shot continual learn-
ing and evaluate it specifically for isolated word classification.

Outside of speech processing, there has been several stud-
ies on continual learning, e.g. [7]. Many of these studies try to
explicitly address the problem of catastrophic forgetting [8, 9].
Within speech research, there has been some limited attempts
to address the continual learning problem, specifically in au-

tomatic speech recognition (ASR) [10] and keyword spotting
applications [11]. However, these studies do not consider the
few-shot learning setting, but rather on adding new vocabulary
words to supervised models trained on substantial amounts of
labelled data. Within the signal processing community, there
has been some studies looking at both few-shot learning and
continual updating [12], but this was for general audio and not
spoken word classification.

In this paper we specifically look at addressing few-shot
continual learning by utilising meta-learning techniques, where
algorithms learn automatically how to solve the continual learn-
ing task [13, 14, 15]. We specifically extend model-agnostic
meta-learning (MAML) [16], which is a meta-learning tech-
nique that optimises an initial set of model weights such that
they can be quickly updated to a new task. MAML has been
used before within speech research for speaker adaptive train-
ing [17], and data-efficient ASR [18, 19], but not for few-shot
continual word learning.

We propose a new approach: MAML for continual learning
(MAMLCon). This extension over MAML is very simple, but
it leads to consistent improvements in few-shot word classifi-
cation. MAMLCon specifically extends MAML by explicitly
doing meta-learning of an increasing number of new classes
in the inner loop of the algorithm. At the end of the inner
loop, MAMLCon also performs a single update using templates
stored for all the classes seen up to that point. Since MAML-
Con has learned how to learn continually, it is able to do so effi-
ciently at test time on classes that are completely unseen during
meta-learning.

We compare MAMLCon to another continual learning ex-
tension of MAML called OML [13]. We perform experiments
where we vary the number of shots, the number of steps where
classes are added, and the final number of word classes. In
all cases the simple MAMLCon extension outperforms OML
in isolated word few-shot classification.

2. MAMLCon
2.1. Background on MAML

Model-agnostic meta-learning (MAML) [16] is an algorithm
that aims to learn an initial set of weights that can be rapidly
adapted to new tasks using just a few examples from the target
task. Consider the example of one-shot speech classification.
We want a model that can learn to classify new words based on
a single training example per word class. E.g. we give the model
a support set1 with a single example for “sing”, “open”, “close”
and then want the model to accurately classify test inputs from

1In few-shot classification, the support set is the small set of training
examples that we get for the target task.
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Figure 1: During training, MAML samples meta-support and
-test sets from labelled data. At test time, it is then presented
with a support set containing classes never seen during train-
ing, and asked to classify test items from these classes.

one of these classes. A naive approach would be to start with a
randomly initialised model and then simply update its weights
through gradient descent directly on this support set. The idea
behind MAML is to instead learn good initial weights which
can then subsequently be fine-tuned. MAML does this by us-
ing a large labelled dataset and then simulating many few-shot
classification tasks. Continuing with our example, let’s say we
have a very large training set of isolated words with their labels
(no examples from our few-shot classes). From this training
dataset we can sample a meta-support set and a meta-test set,
e.g. “hello”, “drop”, “greetings”. In the so-called inner loop of
the MAML algorithm, we then update the model weights using
a few gradient descent steps on the support set. Instead of stor-
ing the resulting weights from these inner-loop updates, MAML
optimises the initial weights θ on top of which the inner-loop
updates are performed. I.e., the outer loop of MAML tries to
find a good initialisation for doing a few gradient steps on a
handful of examples. The result is weights θ∗ that are optimised
so that they work well when a few gradient steps are applied on
top of them using a small set of support examples.

More formally, in the inner loop, the model’s current
weights at step j, θj0, are optimised for a given task Ti, resulting
in updated weights θjT , where T is the total number of inner-
loop update steps. In the outer loop, the performance of the
fine-tuned model θjT is evaluated on a meta-test set, and the ini-
tial weights θj0 are then updated through:

θj+1
0 ← θj0 − β∇

θ
j
0

∑

Ti

LTi

(
XTEST

i , Y TEST
i , θjT

)
(1)

Here, Xi and Yi are data points from task Ti, and β is the outer
learning rate, with the inner-loop update steps having an inner
learning rate α. Updating θj0 in this manner leads to optimised
weights θ∗ which can be fine-tuned to new tasks in only a few
steps. When the inner loop is constrained to only a few exam-
ples per class, the algorithm can learn to accomplish the task
with a limited number of examples, thus resulting in a few-shot
classification model.

To test a model after training it using MAML, we can sam-
ple multiple groups of words from our few-shot classes and
construct multiple scenarios where you train on a support set
and measure on a held-out test set. The optimised model θ∗

is copied to each distinct scenario for training. An example of
how these meta-training and -testing scenarios are constructed
is shown in Figure 1, where we show just one task in both the
training and testing stages. For further reading on meta-learning
and MAML, please refer to [20].

2.2. MAMLCon: Learning to Continually Learn

Consider the following example for word classification in a con-
tinual learning setting. Let’s say at test time a model has re-

Figure 2: The MAMLCon training process. We construct the
continual learning setup directly as a meta-task, where the al-
gorithm is tasked to learn how to perform well in continual
learning setup while being allowed to observe one already seen
example from previously learned word groups and update its
weights with one update step.

ceived a support set for the words “sing”, “open” and “close”.
We used MAML and updated the model on this support set
and it achieves reasonable performance. But now we want the
model to additionally be able to classify the words “turn” and
“give”. We give the model a few more support examples for
these new words and update its weights through further fine-
tuning. Later on, we want to add even more words by just giving
a few examples. The problem is that as we add more and more
words, the model would start to fail on words that it learned
earlier. This is called catastrophic forgetting.

To address this, we propose a new extension of MAML:
model-agnostic meta-learning for continual learning (MAML-
Con). MAMLCon extends MAML in two ways. First, it for-
mulates the continual learning problem itself as a meta-learning
task. Secondly, it utilises a single update step on previously
acquired knowledge. The motivation for this step is to optimise
the model such that one can use use the smallest possible dataset
(one example per class) to maintain performance on previously
learned words.

The training process of MAMLCon is shown in Figure 2.
As an example, let’s say that during training we sample a meta-
support set consisting of five examples each for “hello”, “drop”,
“greetings”. In MAML we would just fine-tune on all the ex-
amples together. Instead, in the inner-loop training phase of
MAMLCon, the model is first trained for T steps on the “hello”
examples, followed by T steps of training on “drop” and then
T steps on “greetings”. Once the model has been trained on all
examples in the meta-support set, a single batched weight up-
date step is performed using a single stored example for each of
the “hello”, “drop”, “greetings” classes. In the outer loop, the
meta-test set, which contains samples for all words in the meta-
support set, is used to evaluate the performance of the model,
and the original weights are updated to obtain an optimal set of
weights θ∗. Because with MAMLCon the model has seen in-
cremental learning during training, these weights are optimised
to facilitate few-shot continual learning. This means we can the
update the model further on “turn” and “give” and the model
would still perform well on “hello”, “drop” and “greetings”.

To state this formally, in the inner loop, the model’s
weights, θj0, are updated through sequential training on new
classes in the meta-support set. The inner-loop optimisation is
performed through the calculation of gradients with respect to
θji based on the loss computed on a per-class (or per-group of
classes) basis from the meta-support set, leading to the updated
weights θji+1. At the end of the inner loop, a single weight up-
date is performed on a previously seen template from each class,
enabling the model to leverage its prior knowledge. In Figure 2,
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this set of templates is denoted with a dash, {X ′
1:3, Y

′
1:3}. The

outer loop computes the loss on the meta-test set and applies the
meta-update step to the original weights to obtain θj+1

0 . The
update is performed based on the gradient of the test loss with
respect to θj0, as in Equation 1.

At test time, MAMLCon is used by just following the inner
loop. Every time that classes are added, T update steps are fol-
lowed with one update step on a set of templates for all classes
learned up to that point. This means that in a real-life use case,
we will just have to store a single example per class to act as
templates in future updates.

Our method is most similar to online aware meta-learning
(OML) [13]. The OML classifier consists of a feature extrac-
tor with weights θFE that feeds into a prediction network with
weights θPN. In OML’s the inner loop, they sample N classes to
train on sequentially but only update θPN, leading to θ∗PN. After
training these N classes, they sample a random batch of data
and measure the meta-test loss on this batch. They then back-
propogate through this entire process to update θFE and θPN. Our
method differs from OML in several ways. Firstly, in the inner
loop, we update the entire network and not just the prediction
network. Secondly, we allow the model to access a single ex-
ample of a previously seen class during the inner-loop training
phase. Finally, in contrast to OML, we do not perform the meta-
test on a random sample of classes, but instead on all classes
seen up to that point.

3. Experimental Setup
Data. We perform word classification experiments using the
Flickr 8k Audio Caption Corpus (FACC) [21] and the Google
Commands v2 dataset [22]. For the experiments on FACC, ut-
terances are segmented into isolated words using forced align-
ments, and words with the same stem are grouped into a single
class. Both the FACC and Google Commands datasets are split
so that words with the same stem will not appear in the train-
ing and test sets. For FACC, this results in approximately 100
unique stems that can be sampled for continual learning, while
there are 10 unique stems for Google Commands. We divide
these stems randomly into our test and train splits. Between
epochs in meta-learning, the same word class will be assigned
a different integer label so that the model is not able memorise
a particular word in the meta-learned weights.

Models. All words are parameterised as mel-frequency
cepstral coefficients (MFCCs) with delta and delta-delta fea-
tures. Input items are zero-padded to a consistent length. A
simple 3-layer 2D convolutional neural network is applied to
extract features from the MFCCs, which are then fed into a sin-
gle fully connected layer that is trained to classify the given
words. We use the same architecture for OML. The Adam op-
timiser [23] is used for both inner and outer loop updates, with
a learning rate of 0.001 for the inner loop and 0.0001 for the
outer loop.

In all the experiments below we start with a set of initial
words, and then incrementally add more word classes. For the
initial set of words being learned by the model, we perform
T = 30 weight updates to ensure saturation of the model to
simulate the scenario in the real world of having a well-trained
model and subsequently updating it. After this, for each new
group of classes added to the model, T = 5 update steps are
performed. In the quick adaptation step on the templates at
the end of the inner loop, a single example per class is sam-
pled from the support set and a single update is performed. We
use the first-order MAML algorithm [16], which ignores the

meta-learning process’s second-order derivatives; this doesn’t
affect performance while speeding up computation and reduc-
ing memory requirements [16, 24]. We adapt the Learn2Learn
software package [25] for training both OML and MAMLCon.2

Evaluation. We consider different continual learning sce-
narios. All start with an initial set of few-shot learned word
classes: this number of initial classes are denoted as CS. We
then incrementally introduce a number of additional word types
(CA) at every update step. The final number of word types is
denoted as N . An experiment can then be summarised using a
succinct notation: e.g. N50:CS5:CA5 would represent a a sce-
nario in which the model ends with a total of 50 word classes,
with each iteration incorporating five new words after initially
training on five words.

4. Experiments
We compare MAMLCon to OML for few-shot word classifica-
tion in a range of continual learning experiments. We do not
evaluate MAML in isolation, as it has been surpassed in perfor-
mance by OML and other recent advancements [13, 14].

4.1. Frequent vs Infrequent Updates

A good continual learning algorithm should perform well in
scenarios where we add many words at every update step (there-
fore requiring fewer updates to reach the final number of types
N ) as well as scenarios where a small number of words are
added at every update (requiring more frequent updates to reach
N ). We compare MAMLCon to OML in both these scenarios,
referred to, respectively, as infrequent and frequent updates. For
infrequent updates we consider these setups: N5:CS1:CA3,
N10:CS2:CA5 and N50:CS5:CA20. For frequent updates we
consider N5:CS1:CA1, N10:CS2:CA1 and N50:CS5:CA5.
All setups here use K = 5 shots (we vary this in the section
below).

The results are shown in Table 1, where N is used to iden-
tify the particular learning scenario. By looking at the infre-
quent update scenario, we observe that MAMLCon achieves
high accuracies in both smaller (N = {5, 10}) and larger class
scenarios (N = 50). In contrast, OML struggles particularly
when more classes need to be learned: this can be seen when
looking at the sharp drop in accuracy between the results for
the FACC dataset in the N = 10 and N = 50 cases, and
on the Google Commands dataset when going from N = 5

2Source code: https://github.com/ByteFuse/MAMLCon

Table 1: Few-shot classification accuracy (%) over all N
classes for continual learning settings where a small number
of classes are added frequently, or a large number of classes
are added infrequently. N is the final number of classes after
continual learning.

Google Commands FACC

N final classes 5 10 10 50

Infrequent updates:
OML 62.1 49.9 72.8 32.3
MAMLCon 85.2 73.6 86.7 74.5

Frequent updates:
OML 61.8 36.5 75.1 51.8
MAMLCon 82.7 72.9 76.8 71.7
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Figure 3: Few-shot classification accuracy (%) of MAMLCon
as the number of shots K per class is varied.

to N = 10. A similar pattern emerges in the frequent update
scenario, where we see that OML shows large drops in accu-
racy when learning more classes: a particularly large drop is
observed on Google Commands when going from N = 5 to
N = 10. Overall, the results demonstrate the superior per-
formance of MAMLCon over OML in both frequent and infre-
quent update scenarios.

4.2. Few-shot Capabilities

The number of support examples a model can use for learning
a new word would depend on the specific practical setting: in
some cases we would have only one example per class, while
in other cases we could get substantially more. Here we assess
the performance of MAMLCon as the number K of support
examples (the number of “shots”) are varied. We investigate
how well MAMLCon operates under these different conditions
to gain a better understanding of its capabilities.

Concretely, we present the performance for continual learn-
ing setups of N50:CS5:CA5 when evaluating on the FACC
dataset and N10:CS2:CA1 when evaluating on the Google
Commands dataset over different values of K. These setups
were chosen as they represent the most challenging scenarios,
requiring multiple weight updates between the initial and final
classes.

As seen in Figure 3, when focusing solely on the results
for the FACC dataset, as K increases from 1 to 20, the overall
performance improves as expected, with only a small increase
in performance between K = 5 and K = 20. However, as K
continues to increase, performance decreases. This pattern is
also evident in the Google Commands results.

It is encouraging that MAMLCon still performs well with
a small number of shots, but it is also somewhat surprising and
concerning that as K increases, performance starts to deteri-
orate. This relationship between accuracy and the number of
training examples in Figure 3 can be explained by the trade-
off between sample complexity and catastrophic forgetting. We
speculate that a moderate value of K, in the range of 20, is
sufficient to acquire a robust representation of the task at hand,
which is to learn a new word. However, as K increases beyond
this point, the weight updates for the new classes may become
excessive, resulting in the model forgetting previously learned
information.

4.3. Retention of Knowledge

In the preceding sections we looked at performance across all
words after a few-shot system has been trained in a continual
learning setting. But how does performance differ between

Table 2: Evaluation of knowledge retention capabilities in con-
tinual learning models on the FACC dataset. We measure the
accuracy for each label group as it was trained, as well as at
the end of training after all words have been learned by the
model. We then show the the difference (∆) between the start
(S) and end (E) accuracies. The final accuracy when taking all
labels into account is also shown.

MAMLCon OML No Pre-Training

Labels S/E ∆ S/E ∆ S/E ∆

1-5 95/95 0 100/35 -65 90/20 -70
6-10 100/95 -5 85/5 -80 85/50 -35
11-15 90/85 -5 100/70 -30 90/25 -65
16-20 95/70 -25 90/75 -25 100/40 -60
21-25 95/80 -15 75/65 -10 60/10 -50
26-30 95/70 -25 100/95 -5 100/40 -60
31-35 95/50 -45 80/55 -25 85/20 -65
36-40 80/70 -10 75/80 5 90/0 -90
41-45 85/60 -25 90/75 -15 75/60 -15
46-50 -/95 - -/90 - -/65 -

Accuracy 77.0 64.5 33.0

words that are learned earlier relative to words added later in
the continual learning cycle? To answer this, we look at the
performance of individual words. This allows us to determine
how well the model performs on previous classes and how well
it retains the knowledge about those words after being trained
on new words.

Table 2 shows the results of MAMLCon, OML and a model
which was not pre-trainedon the FACC dataset. We use a
N50:CS5:CA5 setup, with K = 20. This means that there
will be ten update steps, with five word classes being added
each time. The performance for the words learned in the very
first group are given in the row with the 1-5 label, while the
words learned in the very last update are given in the 46-50 row.
The accuracy after initial training (S) and the final training (E)
for each label group is displayed, along with the difference (∆)
between these two accuracy scores.

MAMLCon again outperforms OML in terms of overall ac-
curacy, achieving 77.0% accuracy versus the 64.5% of OML.
Looking at individual words, MAMLCon is effective in retain-
ing its knowledge of early label groups (1-30) while struggling
more to maintain its accuracy over the later label groups. Con-
versely, OML performs better in retaining knowledge over later
label groups, but shows low accuracy for the early groups.

5. Conclusion
We proposed a novel few-shot continual learning algorithm:
model-agnostic meta-learning for continual learning (MAML-
Con). It is an extension of MAML that formulates the few-shot
continual learning task as a meta-task, allowing the weights to
be updated only once by a previously seen word example upon
completion of training on new words. We compared MAML-
Con to OML, a previous meta-learning algorithm for contin-
ual learning. The findings show that MAMLCon outperforms
OML in overall accuracy across two datasets and label distribu-
tion sizes under both infrequent and frequent update scenarios.
Furthermore, our results indicate that MAMLCon effectively
maintains knowledge of early label groups while showing more
difficulty retaining knowledge of later groups. Nonetheless, it
achieves a higher overall accuracy.
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