
Rehearsal-Free Online Continual Learning for Automatic Speech Recognition

Steven Vander Eeckt, Hugo Van hamme

KU Leuven
Department Electrical Engineering ESAT-PSI, Leuven, Belgium
{steven.vandereeckt, hugo.vanhamme}@esat.kuleuven.be

Abstract
Fine-tuning an Automatic Speech Recognition (ASR) model to
new domains results in degradation on original domains, re-
ferred to as Catastrophic Forgetting (CF). Continual Learning
(CL) attempts to train ASR models without suffering from CF.
While in ASR, offline CL is usually considered, online CL is
a more realistic but also more challenging scenario where the
model, unlike in offline CL, does not know when a task bound-
ary occurs. Rehearsal-based methods, which store previously
seen utterances in a memory, are often considered for online CL,
in ASR and other research domains. However, recent research
has shown that weight averaging is an effective method for of-
fline CL in ASR. Based on this result, we propose, in this paper,
a rehearsal-free method applicable for online CL. Our method
outperforms all baselines, including rehearsal-based methods,
in two experiments. Our method is a next step towards general
CL for ASR, which should enable CL in all scenarios with few
if any constraints.
Index Terms: automatic speech recognition, online continual
learning, catastrophic forgetting, weight averaging

1. Introduction
Catastrophic Forgetting (CF) [1] occurs when Automatic
Speech Recognition (ASR) models are extended to new do-
mains (e.g. accents, languages, speakers, topics, etc.) which
differ from the original domain the models were trained on.
It means that by learning the new domains, the models’ per-
formance of the original domain degrades. This severely lim-
its the possibility to build very powerful, diverse and inclusive
ASR models, performing well on all dialects, accents, speak-
ers, topics, etc. because the ASR models cannot be properly
extended. Learning a new dialect, accent or speaker will result
in the model forgetting old dialects, accents or speakers.

Continual Learning (CL) attempts to find strategies to train
models without suffering from CF. Within ASR, CL has re-
cently been gaining attention [2, 3, 4, 5, 6, 7, 8, 9]. However,
with the exception of [8], the focus of the above research is on
offline CL rather than the more challenging online CL.

In offline CL, the model, trained on an initial task, is ex-
tended to new tasks. Tasks are represented by training and vali-
dation sets which the model has access to until it has learned the
given tasks. Moreover, for the model, it is clear when one tasks
ends and another starts. In online CL, on other hand, the model
receives a stream of batches which it has to process. Once a
batch has been learned, access is lost. Moreover, the model does
not know whether two consecutive batches belong to the same
task or not, i.e. it does not know when a task boundary occurs.
Clearly, online CL is a more realistic and generally applicable
though also more challenging scenario than offline CL.

To the best of our knowledge, [8] is the only work consid-
ering online CL for ASR. In [8], a well-known CL method from
computer vision, Gradient Episodic Memory (GEM) [10], is ap-
plied to online CL for ASR and referred to as O-GEM (Online
GEM). O-GEM, like GEM, is a rehearsal-based method, which
means that it attempts to overcome CF by storing previously
seen utterances in a small memory. Utterances in this small
memory are then later used during training of new batches to
prevent forgetting. In computer vision, online CL has received
much attention, with most of the proposed methods also being
rehearsal-based methods [11, 12, 13, 14, 15], since the gap be-
tween rehearsal-based and rehearsal-free methods, which do not
use a memory, remains, in particular for online CL, large.

The same could be said about offline CL in ASR [2, 3].
However, recently, [9] found weight averaging (i.e. computing
the average of the model before and after being adapted to a
new task) to be very effective. Without using a memory, their
simple method outperformed rehearsal-based methods; which
is significant because storing utterances from previous tasks is
not always allowed nor desired. Nevertheless, their method is
not applicable to online CL. Based on the simple but very effec-
tive method from [9] and inspired by the methods from [14, 15]
for computer vision, we propose an online CL method that is
rehearsal-free and uses weight averaging. In two experiments,
our method outperforms the rehearsal-based method from [8]
as well as the rehearsal-based methods applicable to online CL
from [3]. We believe that this paper is an important next step
towards general CL [13] for ASR, which must enable CL in
all scenarios and with few if any constraints, since our method
achieves the best performance without requiring a memory and
without requiring to know the task boundaries.

2. Model
We consider an encoder-decoder end-to-end ASR model with
parameters θ ∈ RN , taking as input speech frames X of size
LF×di with LF the number of frames. The output tokens of the
model are C word pieces. Given ground truth y of LW outputs
tokens, the model’s loss consists of a cross-entropy (CE) loss
Ldec, computed on the output of the decoder, and a CTC loss
Lctc, computed on the output of the encoder (with 0 ≤ c ≤ 1):

Lce(X, y; θ) = (1− c)Ldec(X, y; θ) + cLctc(X, y; θ) (1)

3. Online Continual Learning
The objective of continual learning is to learn new tasks without
forgetting old ones. Often, it is assumed that tasks boundaries
are known and that the data of the tasks remains available until
the task has been learned by the model; this is called offline CL.
However, for online CL, this is not the case. Access to each

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

944 10.21437/Interspeech.2023-788

Table 1: Results after learning the stream of batches from Fig. 1a. All WERs (expressed in percentages) are evaluated on the final
model. † indicates that the method’s hyper-parameters were optimized on the test experiment. Best AWER result is in bold.

WER per task

Model M (τ, λ, τ2) T0–US T1–ENG T2–AUS T3–IND T4–SCO T5–IRE AWER
Initial model θ0 17.3 13.9 15.4 21.4 15.2 11.0 15.72
FT 19.4 15.0 15.2 26.1 15.5 11.5 17.12

UOE 18.3 12.6 13.1 21.6 14.2 11.0 15.15
EWC† 18.3 13.4 14.1 22.4 14.7 11.1 15.66
ER† 0.5k 18.1 13.2 13.9 22.1 14.7 11.1 15.50
ER† 2.0k 17.9 12.9 13.6 21.5 14.1 10.8 15.13
O-GEM 2.0k 19.0 14.1 14.4 25.2 14.9 11.3 16.48

AOS (1, 0.1, 1) 17.1 12.7 14.0 21.4 14.3 10.7 15.03
AOS† (2, 0.1, 1) 17.3 12.5 13.6 21.5 14.2 10.7 14.96

sample or batch is lost once it has been seen by the model and
the task boundaries are unknown.

Formally, a model θ0 has been trained on an initial task T0
with dataD0, containing D0 samples. Next, the model receives
a (non-i.i.d.) stream of batches Bi (i > 0) of size B, which it
processes batch after batch. When learning Bi, access to Bi−1

is lost, except possibly through a memoryMi−1 of fixed size
M . Batches belong to a certain task Tti , but this is not known
by the model. The model should learn all batches well while
retaining the knowledge from old batches and tasks.

4. Method
Our method, which we call AOS (Averaging for Online CL of
ASR), consists of two parts: averaging (Sec. 4.1) and regular-
ization (Sec. 4.2). An overview is given in Algorithm 1.

4.1. Online Averaging

Inspired by the effectiveness of weight averaging for CL in ASR
[9] and the methods of [14, 15], we consider what we refer to
as ’online averaging’ for our online CL method. In [9], the
model is first adapted to a new task, after which the average
was computed between the model before and after adaptation.
The weight of the adapted model is η = 1/t with t the num-
ber of seen tasks. However, in [9], task boundaries are assumed
to be known, which is not the case here. Therefore, we con-
sider ’online averaging’, i.e. we average the ’old’ and ’adapted’
model after each batch. In other words, if θi is the ’final’ model
at batch Bi, and θ̃i+1 is the model adapted to a batch Bi+1, then
the final model after batch Bi+1 is:

θi+1 = (1− ηi+1)θi + ηi+1θ̃i+1 (2)

Two questions remain here.
The adapted model. What is θ̃i+1? If θ̃i+1 is θi trained

on a new batch Bi+1, then θi+1, instead of through Eq. 2,
could be obtained by learning the new batch with a ηi+1 times
smaller learning rate than θ̃i+1, i.e. our method would just be
fine-tuning on the new batch with a ηi+1 times smaller learning
rate. We do not expect this to work well. Therefore, we keep
two models: one, θi+1, which we call the final model; and an-
other, θ̃i+1, the adapted model, which starts from θ0 but is then
adapted to the new batches and thus from this point on deviates
from θi. It is very likely that the adapted model suffers from
forgetting; at inference time, only the final model should thus
be considered. The adapted model is only to aid the final model

by transferring new information to it. This resembles the meth-
ods from [14, 15], which focus on computer vision and were
inspired by the Complementary Learning Systems theory [16].

Weighted average. What is the value of ηi+1? Most similar
to η = 1/t from [9] would be ηi+1 = B/(Di+B), where Di is
the amount of data the model has seen so far and B is the current
batch size. However, we make a number of improvements:

1. The model receives as input utterances consisting of a num-
ber of frames, LF . To allow longer utterances to have an
higher impact, we consider F , the number of frames in a
batch, rather than the batch size B. Fi is then the number
of frames seen after processing batch i, and F0 is the total
number of frames of initial task T0.

2. For the decoder of the model, the length of an utterance is
related to its number of output tokens LW . Therefore, for the
decoder, we consider W , the number of output tokens in a
batch, rather than the number of frames F ; similar to Fi and
F0, Wi and W0 are then the total number of output tokens
after processing batch i and the number of output tokens in
initial task T0, respectively. This means that the encoder and
decoder have separate values ηenc,i+1 and ηdec,i+1 to compute
the average in Eq. 2 after processing batch i+ 1.

3. If the original task was a very large one, i.e. if F0 (W0) is
very large, then ηenc,i+1 (ηdec,i+1) will be very small and it
will take a long time for the encoder (decoder) of the model
to learn new information. Therefore, we introduce τ ≥ 1 to
increase the plasticity of the model:

ηenc,i+1 =
τ · F

Fi + τ · F (3)

and the same for ηdec,i+1, where we then consider W and Wi.
4. For monolingual experiments, the encoder is more prone to

forgetting than the decoder [4]. On the other hand, [6] shows
that freezing the decoder might overcome forgetting. There-
fore, we consider τ2 for ηdec,i+1:

ηdec,i+1 =
τ2 ·W

Wi + τ2 ·W
(4)

With (τ, τ2), the decoder might be updated more conserva-
tively (τ2 ≤ τ) or progressively (τ2 ≥ τ) than the encoder.

In summary, the final model θi+1 is obtained after averaging
(Eq. 2) with the adapted model θ̃i+1, which is trained on the
stream of batches, using the weight ηenc,i+1 from Eq. 3 for the
encoder and ηdec,i+1 from Eq. 4 for the decoder.

945

Algorithm 1 AOS (Averaging for Online CL of ASR)

1: Given: initial model θ0 trained on data D0 with D0 utter-
ances, F0 frames and W0 output tokens.

2: Choose: α, c (for model); τ , λ, τ2 (for AOS)
3: Set: i← 0, θ̃0 ← θ0
4: # online continual learning:
5: for each batch (X, y) ∈ Bi+1 do
6: # compute the loss on new batch for adapted model
7: L ← L(X, y; θ̃i) ▷ See Eq. 7
8: # update adapted model with SGD
9: θ̃i+1 ← θ̃i − α∇L

10: # F : number of frames in X
11: ηenc,i+1 ← τF/(Fi + τF) ▷ See Eq. 3
12: # W : number of output tokens in y
13: ηdec,i+1 ← τ2W/(Wi + τ2W) ▷ See Eq. 4
14: # use ηdec,i+1 for decoder parameters, else use ηenc,i+1

15: ηi+1 ← ηdec,i+1 if decoder layer else ηenc,i+1

16: # update the final model
17: θi+1 ← (1− ηi+1)θi + ηi+1θ̃i+1 ▷ See Eq. 2
18: # update seen frames Fi and seen outputs Wi

19: (Fi+1, Wi+1)← (Fi + F, Wi +W)
20: i← i+ 1
21: end for

4.2. Regularization

We apply regularization to the adapted model to improve the
performance of the final model. We consider knowledge distil-
lation (KD) [17] as in Learning without Forgetting (LWF) [18],
a popular CL method that uses the data of the current batch to
distill knowledge from the old to the current model. With ŝictc,kc

and sictc,kc the CTC softmax output of the cth word piece at the
kth frame of, respectively, the final and adapted model after
batch i, the KD loss for the CTC output becomes:

Lctc, kd(X; θ) =

LF∑

k=1

C∑

c=1

ŝictc,kc log s
i
ctc,kc (5)

The KD loss for the decoder, Ldec, kd(X, y; θ), is computed sim-
ilarly, by replacing, in Eq. 5, the CTC softmax outputs by the
decoder softmax outputs, with the outer sum then summing over
all LW outputs. Since the decoder is autoregressive, its KD loss
depends on the ground truth y. Overall, the KD loss becomes:

Lkd(X, y; θ) = (1− c)Ldec, kd(X, y; θ) + cLctc, kd(X; θ) (6)

With λ the regularization weight, the above KD regularization
loss is then added to the model’s loss from Eq. 1 as follows:

L(X, y; θ) = (1− λ)Lce(X, y; θ) + λLkd(X, y; θ) (7)

The KD loss transfers knowledge from the final to the adapted
model and, as such, regularizes the training of the latter, which
then improves the performance of the former.

5. Experiments
All experiments are done in ESPnet2 [19]. For all information
regarding the experiments, we refer to our Github repository 1.

Data. We consider English data of Common Voice (CV)
[20], split into six accents: United States (US), England (ENG),
Australia (AUS), India (IND), Scotland (SCO), Ireland (IRE).

1https://github.com/StevenVdEeckt/online-cl-for-asr

The initial model θ0 is trained on an initial task T0; the batches
of the remaining five tasks are sorted by task and by speaker
and as such presented to the model. This makes the experiment
more challenging, since the model is susceptible to forgetting
both across tasks (accents) and within tasks (speakers). We con-
sider two sequences of the tasks. Both take US as the initial task
T0, since US is by far the largest task (350k utterances). We
consider this to be the most realistic scenario in practice. For the
five remaining tasks (262k utterances), we consider the two se-
quences as shown in Fig. 1: ENG→AUS→IND→SCO→IRE
and IRE→IND→AUS→ENG→SCO.

Model. The model (47M parameters) consists of 12 Con-
former [21] encoders and 6 Transformer [22] decoders of di-
mension 2048, with 4 attention heads with dimension 256. The
output are C = 5000 word pieces generated by Sentence Piece
[23] on T0. The weight of the CTC loss is c = 0.3. The model
is trained on initial task T0 for 80 epochs. Afterwards, it learns
the stream of batches Bi (i > 0), seeing each batch only once.
The batch size is 32, but since each batch only contains one
speaker, in practice the average batch size is 22. The model is
updated with the SGD optimizer with a learning rate of 0.01.

Baselines. We consider the following baselines:
• Fine-Tuning (FT): adaptation without regularization. FT is

considered the worst case baseline and will suffer from CF.
• Experience Replay (ER) [11]: trains jointly on the new batch

and a batch sampled from memory. We consider the imple-
mentation of [3] with regularization weight.

• Online Gradient Episodic Memory (O-GEM) [8]: online im-
plementation of GEM [10], which updates the gradient before
the SGD update to prevent interference with previous tasks.
We sample randomly from the memory.

• Update Only Encoders (UOE) [6]: proposes to only update
the encoders (without layer normalization) to overcome CF.

• Elastic Weight Consolidation (EWC) [24]: computes for all
parameters ’importance weights’, used in a weighted L2 reg-
ularization loss. We consider the online version of [25].

For the rehearsal-based methods (ER and O-GEM), we consider
reservoir sampling [26] to fill the memory of size M = 2k.

Metrics. We report the WER per task, as well as average
WER (AWER), averaged over all seen tasks (accents).

Hyper-parameters. For the hyper-parameters, we run
hyper-parameter searches on a ’test experiment’, by adapting
the model trained on the initial task T0 = US to some small
accents from CV not present in one of the six tasks. These ac-
cents account for only 13k utterances, so approximately 5% of
the ’real’ experiment. Next, we consider the AWER between
the validation sets of US and the new task to find the optimal
hyper-parameter value. Since the test experiment contains only
a small number of utterances, we put additional focus on ’not
forgetting’ by giving the WER on US in the computation of
AWER a higher weight than the WER on the new task (2 vs. 1).

6. Results
Tables 1 and 2 show the results of the experiments for the two
sequences. The performance of FT and its forgetting illustrate
that CF remains a serious issue, even if the new domains (tasks)
are not so dissimilar to the original one (i.e. different accents).
In addition, from Tab. 1, we observe the following:
• Our method, AOS, outperforms all baselines, even with the

default (i.e. non-optimized) values for its hyper-parameters.
These baselines include ER and O-GEM, which have access

946

Table 2: Results after learning the stream of batches from Fig. 1b. All WERs (expressed in percentages) are evaluated on the final
model. † indicates that the method’s hyper-parameters were optimized on the test experiment. Best AWER result is in bold.

WER per task

Model M (τ, λ, τ2) T0–US T1–IRE T2–IND T3–AUS T4–ENG T5–SCO AWER
Initial model θ0 17.3 11.0 21.4 15.4 13.9 15.2 15.72
FT 19.1 11.5 25.3 14.2 13.1 14.5 16.27

UOE 18.7 11.7 24.2 13.0 12.2 14.3 15.68
EWC† 17.9 11.1 22.9 14.1 12.6 15.0 15.60
ER† 2.0k 17.8 10.8 21.4 13.9 12.5 14.2 15.11
O-GEM 2.0k 19.0 11.5 25.3 14.0 13.0 14.3 16.18

AOS (1, 0.1, 1) 17.2 10.7 21.2 14.3 12.9 14.4 15.11
AOS† (2, 0.1, 1) 17.5 10.7 21.5 13.7 12.6 14.3 15.03

(a) Sequence 1

(b) Sequence 2

Figure 1: The stream of batches as presented to the model. The
axis shows the batch number (average batch size is 22). The
batches are sorted by speaker and split into five accents/tasks,
as shown. The task boundaries are not known by the model.

to a memory of M = 2k utterances. This is a relatively large
memory, given that the 262k utterances from the stream of
batches are only seen once. If a smaller memory has to be
used (e.g. M = 0.5k), the performance of ER deteriorates
and the gap with our (rehearsal-free) method becomes larger.
UOE, which freezes the decoder and norm layers of the initial
model θ0, is the second best baseline. It is also rehearsal-free
and works well, yet is still outperformed by our method.

• In particular the performance of the methods on T0–US is in-
teresting to compare, since this is the initial task the model
was trained on. We can see that none of the baselines come
close to the zero forgetting that our method achieves (by com-
paring it to Initial model θ0), and the gap between our method
and the best rehearsal-free baseline, UOE, in this regard be-
comes large, since UOE suffers from CF. Our method with
the default setting even achieves positive backward transfer,
i.e. by learning new tasks it improves on old ones.

• Even in the default setting, AOS outperforms all baselines.
Nevertheless, when optimizing (τ, λ, τ2) on the test exper-
iment, we obtain even better performance, though the dif-
ference is small. With the optimal hyper-parameters, the
encoder is averaged more progressively than the decoder
(τ > τ2). As a result, there is no positive backward transfer
on T0–US, however, on the new tasks, the model performs
better thanks to increased plasticity (τ > 1).

Similar observations apply to the second sequence (Tab. 2):
• Our method outperforms all baselines, with the exception of

ER for the default setting of our method; they achieve the
same performance. With the optimal hyper-parameters, AOS
outperforms all baselines, including ER. Note also that here
UOE is much less effective than in Tab. 1. Consequently,

the gap between our method and the rehearsal-free baselines
(UOE and EWC) is wide; only our method is able to compete
with the rehearsal-based baselines.

• Our method achieves the best performance on the initial task
T0–US. Again, the default setting of our method achieves
positive backward transfer, while the optimal setting achieves
slight forgetting, though still better than the other methods.

• The optimal setting again outperforms the default setting,
though the difference is small and it comes at the cost of some
forgetting for the initial task. However, increased plasticity
(τ > 1) enables the model to better learn the new tasks for
the optimal setting of our method.

Overall, it can be seen that our method is highly effective, sur-
passing, even in its default setting, all baselines including those
with large memory and this in both sequences. In addition, our
method achieves zero forgetting unlike the baselines.

7. Conclusions
We propose a very effective and simple method for online CL
for end-to-end ASR that involves two models: an adapted model
and final model. The adapted model is trained on new batches
with regularization, and its parameters are then averaged with
those of the final model to update the final model. The weight
of the averaging is determined by the number and length of ut-
terances in the new batch compared to those previously seen.
The averaging transfers knowledge from the adapted model to
the final model, allowing it to learn new tasks without forgetting
old ones. This is illustrated by the experiments, in which our
method, even in its default setting, outperforms all baselines, in-
cluding those with large memory. Our method is rehearsal-free,
making it simpler and more efficient than other approaches.

By overcoming the need for task boundaries and/or a mem-
ory, our method takes a step towards a more general CL method
for ASR that can work in many different scenarios (when stor-
ing utterances is not allowed and/or task boundaries unknown).
In future work, we aim to further extend our method in two
ways, by allowing it to: (1) learn new batches in an unsuper-
vised way; (2) introduce new word pieces to the vocabulary if
needed. While this paper is an important next step towards gen-
eral CL for ASR, these two objectives will be our focus in the
future to achieve a truly general CL method for ASR.

8. Acknowledgments
Research supported by Research Foundation Flanders (FWO)
under grant S004923N of the SBO programme.

947

9. References
[1] M. McCloskey and N. J. Cohen, “Catastrophic interference in

connectionist networks: The sequential learning problem,” ser.
Psychology of Learning and Motivation, 1989, vol. 24, pp.
109–165. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0079742108605368

[2] H.-J. Chang, H. yi Lee, and L. shan Lee, “Towards Lifelong
Learning of End-to-End ASR,” in Proc. Interspeech 2021, 2021,
pp. 2551–2555.

[3] S. Vander Eeckt and H. Van hamme, “Continual learning
for monolingual end-to-end automatic speech recognition,”
Proceedings EUSIPCO 2022, 2022. [Online]. Available:
$$Uhttps://lirias.kuleuven.be/retrieve/666478$$D4698 preprint.
pdf[AvailableforKULeuvenusers-Embargoeduntil2022-09-02]

[4] S. V. Eeckt and H. Van Hamme, “Using adapters to overcome
catastrophic forgetting in end-to-end automatic speech recogni-
tion,” in ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–
5.

[5] M. Sustek, S. Sadhu, and H. Hermansky, “Dealing with Un-
knowns in Continual Learning for End-to-end Automatic Speech
Recognition,” in Proc. Interspeech 2022, 2022, pp. 1046–1050.

[6] Y. Takashima, S. Horiguchi, S. Watanabe, L. P. Garcı́a-Perera, and
Y. Kawaguchi, “Updating only encoders prevents catastrophic
forgetting of end-to-end ASR models,” in Interspeech 2022, 23rd
Annual Conference of the International Speech Communication
Association, Incheon, Korea, 18-22 September 2022, H. Ko and
J. H. L. Hansen, Eds. ISCA, 2022, pp. 2218–2222. [Online].
Available: https://doi.org/10.21437/Interspeech.2022-11282

[7] A. Diwan, C.-F. Yeh, W.-N. Hsu, P. Tomasello, E. Choi, D. Har-
wath, and A. Mohamed, “Continual learning for on-device speech
recognition using disentangled conformers,” in ICASSP 2023 -
2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2023, pp. 1–5.

[8] M. Yang, I. Lane, and S. Watanabe, “Online continual learning
of end-to-end speech recognition models,” in Proc. Interspeech
2022, 2022.

[9] S. Vander Eeckt and H. Van Hamme, “Weight averaging: A sim-
ple yet effective method to overcome catastrophic forgetting in
automatic speech recognition,” in ICASSP 2023 - 2023 IEEE In-
ternational Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2023, pp. 1–5.

[10] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for
continual learning,” in Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, ser. NIPS’17,
2017, p. 6470–6479.

[11] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne,
“Experience replay for continual learning,” in Advances in Neural
Information Processing Systems, vol. 32. Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/
paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf

[12] R. Aljundi, E. Belilovsky, T. Tuytelaars, L. Charlin,
M. Caccia, M. Lin, and L. Page-Caccia, “Online continual
learning with maximal interfered retrieval,” in Advances
in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, Eds. Curran Associates, Inc., 2019, pp.
11 849–11 860. [Online]. Available: http://papers.nips.cc/paper/
9357-online-continual-learning-with-maximal-interfered-retrieval.
pdf

[13] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. CALDER-
ARA, “Dark experience for general continual learning: a strong,
simple baseline,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 15 920–
15 930. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/file/b704ea2c39778f07c617f6b7ce480e9e-Paper.pdf

[14] E. Arani, F. Sarfraz, and B. Zonooz, “Learning fast, learning slow:
A general continual learning method based on complementary
learning system,” in International Conference on Learning
Representations, 2022. [Online]. Available: https://openreview.
net/forum?id=uxxFrDwrE7Y

[15] F. Sarfraz, E. Arani, and B. Zonooz, “Synergy between
synaptic consolidation and experience replay for general
continual learning,” in Proceedings of The 1st Conference on
Lifelong Learning Agents, ser. Proceedings of Machine Learning
Research, S. Chandar, R. Pascanu, and D. Precup, Eds., vol. 199.
PMLR, 22–24 Aug 2022, pp. 920–936. [Online]. Available:
https://proceedings.mlr.press/v199/sarfraz22a.html

[16] D. Kumaran, D. Hassabis, and J. L. McClelland, “What learning
systems do intelligent agents need? complementary learning
systems theory updated,” Trends in Cognitive Sciences, vol. 20,
no. 7, pp. 512–534, 2016. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1364661316300432

[17] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” NeurIPS, vol. abs/1503.02531, 2014.
[Online]. Available: http://arxiv.org/abs/1503.02531

[18] Z. Li and D. Hoiem, “Learning without forgetting,” in Computer
Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling,
Eds. Springer International Publishing, 2016, pp. 614–629.

[19] S. Watanabe et al., “ESPnet: End-to-end speech process-
ing toolkit,” in Proceedings of Interspeech, 2018, pp.
2207–2211. [Online]. Available: http://dx.doi.org/10.21437/
Interspeech.2018-1456

[20] R. Ardila et al., “Common voice: A massively-multilingual
speech corpus,” in Proceedings of the 12th Conference on Lan-
guage Resources and Evaluation (LREC 2020), 2020, pp. 4211–
4215.

[21] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition,” in
Proc. Interspeech 2020, 2020, pp. 5036–5040.

[22] A. Vaswani et al., “Attention is all you need,” in Advances in Neu-
ral Information Processing Systems, vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[23] T. Kudo and J. Richardson, “SentencePiece: A simple and
language independent subword tokenizer and detokenizer for
neural text processing,” in Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing: System
Demonstrations. Association for Computational Linguistics,
2018, pp. 66–71. [Online]. Available: https://aclanthology.org/
D18-2012

[24] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in
neural networks,” Proceedings of the National Academy of
Sciences, vol. 114, no. 13, pp. 3521–3526, 2017. [Online].
Available: https://www.pnas.org/content/114/13/3521

[25] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska,
Y. W. Teh, R. Pascanu, and R. Hadsell, “Progress and compress:
A scalable framework for continual learning,” in Proceedings
of the 35th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, J. Dy and A. Krause,
Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 4528–4537. [Online].
Available: https://proceedings.mlr.press/v80/schwarz18a.html

[26] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans.
Math. Softw., vol. 11, no. 1, p. 37–57, mar 1985. [Online].
Available: https://doi.org/10.1145/3147.3165

948

