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Abstract
Individuals with dysarthria suffer from difficulties in speech
production and consequent reductions in speech intelligibility,
which is an important concept for diagnosing and assessing ef-
fectiveness of speech therapy. In the current study, we inves-
tigate which acoustic-phonetic features are most relevant and
important in automatically assessing intelligibility and in clas-
sifying speech as healthy or dysarthric. After feature selection,
we applied a stepwise linear regression to predict intelligibility
ratings and a Linear Discriminant Analysis to classify healthy
and dysarthric speech. We observed a very strong correlation
between actual and predicted intelligibility ratings in the regres-
sion analysis. We also observed a high classification accuracy
of 98.06% by using 17 features and a comparable, high accu-
racy of 96.11% with only two features. These results indicate
the usefulness of the acoustic-phonetic features in automatic as-
sessments of dysarthric speech.
Index Terms: acoustic-phonetic features, dysarthric speech,
speech intelligibility, speech classification

1. Introduction
Dysarthria comprises a set of motor speech disorders caused by
a neurological injury such as Parkinson’s disease or stroke. In-
dividuals with dysarthria experience difficulties in speech pro-
duction which can lead to a reduction in speech intelligibility.
As a consequence, they may gradually lose contact with friends
and family and eventually become isolated from social life and
society. Such outcomes can severely affect their quality of life.
In order to alleviate such repercussions and improve speech in-
telligibility, speech therapy has been found to be effective.

Speech intelligibility is an important concept in speech-
language pathology that has been used to diagnose and assess
the effectiveness of speech therapy. In the clinical practice of
speech therapy, a common definition of intelligibility proposed
by Hustad is that “Intelligibility refers to how well a speaker’s
acoustic signal can be accurately recovered by a listener” [1].
In line with this definition, intelligibility has been measured
through various methods, such as by having human listeners
transcribe what they hear [2] [3] or by ratings on a visual ana-
logue scale (VAS) [4] [5]. In fact, ratings through VAS have
been shown to be a reliable and valid intelligibility measure [4]
[5] and have been widely used in research and clinical practice.

However, such procedures that rely on human listeners are
quite time-consuming and labor-intensive. Although it may be
feasible to apply these rating procedures in research, easy-to-
use tools are highly desirable in clinical practice. For these rea-
sons, it is necessary to explore procedures that employ automa-
tion to assess speech intelligibility and to identify dysarthric
speakers. Many researchers have employed Automatic Speech

Recognition (ASR) or more sophisticated machine learning
(ML) algorithms to obtain embeddings of dysarthric speech [6]
[7]. However, it is hard to interpret how these ML-based em-
beddings are related to speech intelligibility and to properties
of dysarthric speech that can be addressed in speech therapy.

Procedures using acoustic-phonetic analysis can provide
detailed diagnostic information about deviations in dysarthric
speech and have been shown to be promising for assessing
dysarthric speech [8] [9]. Based on automatic identifications
of the most relevant features of dysarthric speech, it is possible
to establish reliable, accurate and non-invasive assessment tools
to assess the intelligibility and to distinguish dysarthric speech
from healthy speech, as well as diagnose the type and extent
of speech disorders. In addition, previous studies [8] [9] [10]
have shown that therapeutical treatment through a serious game
can lead to improvements in speech intelligibility and increases
in loudness and intensity although such improvements and in-
creases were speaker-dependent. Anyhow, these studies further
indicate the possibility of using acoustic-phonetic features to
assess speech intelligibility and to classify dysarthric speakers
from healthy speakers.

However, so far, it is still unclear what acoustic-phonetic
features are the most relevant and important in the assess-
ments of intelligibility and classification of speech as healthy
or dysarthric. Thus, in the current paper, we analyze a set of
acoustic-phonetic features and focus on addressing two research
questions:
(1) To what extent can intelligibility ratings be predicted by ob-
jective, acoustic-phonetic features?
(2) To what extent can acoustic correlates of intelligibility clas-
sify healthy and dysarthric speech?

Specifically, we start with a feature selection and a stepwise
linear regression analysis to identify the most relevant features
for predicting intelligibility ratings. Then, we explore different
combinations of the features selected by the regression analysis
to identify the most relevant features for classifying healthy and
dysarthric speech. Based on the analyses, we intend to provide
insights into automatic assessments of dysarthric speech.

2. Materials and methods
2.1. Speakers and speech materials

To cover various types of speech materials, we used two three-
word lists, two semantically unpredictable sentences (SUS), and
four meaningful sentences selected from the commonly-used,
phonetically-balanced text “Papa and Marloes” [11] in Dutch.
The speakers involved in this study were those who participated
in a project which was aimed at developing a serious game for
conducting research on speech disorder treatment through ASR-
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based technology1 [10]. All speakers were native speakers of
Dutch, with five being healthy (4 male and 1 female) and thir-
teen having dysarthria (10 male and 3 female). The healthy
speakers were aged between 61 and 69 (M = 65.0, SD = 3.4).
The dysarthric speakers were aged between 53 and 75 (M =
64.2, SD = 6.4), ten of them had Parkinson’s and three had had
a Cerebral Vascular Accident. All eighteen speakers provided
recordings of the selected speech materials without experienc-
ing the game. In addition, in order to have a larger dataset, we
also included the recordings that were collected from eight of
the dysarthric speakers (5 male and 3 female) immediately after
the game. In total, there are 208 utterance items (from this point
called ‘items’). As we did not collect the data, we do not have
permission to publicly release it.

2.2. Intelligibility ratings and acoustic-phonetic features

For each of the 208 items, eleven intelligibility rating scores
were collected from eleven speech therapists (all female) as lis-
teners through VAS ranging from 0 (not intelligible) to 100 (in-
telligible) as described in [12]. The inter-listener reliability for
the VAS scores through the Intraclass Correlation Coefficients
was >0.9, which signifies an excellent inter-listener reliability
[12]. We calculated the mean values of the VAS scores for each
item before conducting the statistical analyses in Section 2.3.
Moreover, for each item, we extracted a total of 103 acoustic-
phonetic features including 88 eGeMAPS features [13] [14] and
15 Praat features related to duration, formant frequency, pitch,
intensity and gravity center [15].

2.3. Statistical analyses

To avoid an overfitting problem, we first applied a feature se-
lection by employing a LASSO analysis, with an alpha of 1 and
3 folds. Based on the selected features of LASSO, we further
applied regression and classification analyses to answer our two
research questions, respectively.

Specifically, to address the first research question about pre-
dicting intelligibility ratings, we applied a both-direction step-
wise linear regression with VAS scores as the dependent vari-
able in a generalized linear model (GLM). The Akaike Infor-
mation Criterion was used in the stepwise approach to decide
which acoustic-phonetic features to include in the final GLM
model. Both the LASSO analysis and the stepwise linear regres-
sion approach were implemented by using the GLMnet pack-
age [16] in R (version 4.2.2).

To address the second research question about classifying
healthy and dysarthric speech, we used the features selected by
the final GLM model and applied a Linear Discriminant Anal-
ysis (LDA) classification. In detail, based on the significance
of the features selected by the final GLM model, we first ap-
plied LDA on multiple subsets of these features. That is, we
started with the most significant feature selected by the final
GLM model and then gradually add another feature that was the
most significant in the rest of the features according to their sig-
nificance levels reported by the final GLM model. In addition,
we exhaustively applied LDA on each pair of features selected
by the final GLM model. These analyses aimed to study which
combination of features performs the best in classifying healthy
and dysarthric speech. Note that for classification, we only in-
volved the items for the five healthy speakers and for the eight
dysarthric speakers to have a rather balanced dataset, leading

1According to the Ethics Committee at Radboud University, Ethics
approval was not required.

Feature Signf. Sign

1 mean of F2 bandwidth *** -
2 mean of harmonic difference H1-A3 *** +
3 50th percentile of pitch in semitone (F0 > 27.5Hz) *** +
4 mean of MFCC 4 over voiced regions *** -
5 mean of harmonic difference H1-H2 *** -
6 mean of spectral slope 500-1500 Hz over voiced regions *** +
7 coefficient of variation of MFCC 3 over voiced regions *** +
8 coefficient over variation of spectral flux *** +
9 maximal intensity *** +
10 coefficient of variation of HNR *** +
11 coefficient of variation of F2 *** +
12 coefficient of variation of the F3 bandwidth *** -
13 center of gravity ** +
14 standard deviation of the loudness slope of rising signal parts ** -
15 the number of loudness peaks per second ** +
16 coefficient of variation of pitch in semitone (F0 > 27.5Hz) ** +
17 pitch variability * -
18 standard deviation of intensity * +
19 coefficient of variation of harmonic difference H1-H2 * +
20 mean of F3 bandwidth * +
21 mean of MFCC 2 * -
22 coefficient of variation of MFCC 1 -
23 standard deviation of pitch in semitone (F0 > 27.5Hz) -
24 coefficient of variation of MFCC 4 over voiced regions -

Table 1: The features selected by the final GLM model in the
stepwise analysis in order of their significance. 0 ‘***’ 0.001
‘**’ 0.01 ‘*’ >0.01 ‘ ’., where the top feature has the smallest p
value. The sign column indicates whether the GLM coefficient
is positive (+) or negative (-).

Figure 1: The scattergram for the actual and predicted VAS
scores per item by the final GLM model. The correlation is 0.80
(p < .0001).

to a total of 104 items. The LDA analyses were implemented
by using the standard parameters of the LDA in the scikit-learn
package in python [17] with a Leave-One-Speaker-Out (LOSO)
cross-validation scheme [18].

3. Results
3.1. Regression for predicting intelligibility ratings

The LASSO analysis selected 53 out of 103 acoustic-phonetic
features. Based on these 53 features, the stepwise GLM analy-
sis further selected and reported 24 features in the final model.
These 24 features were ranked according to their significance
levels in the final GLM model and are shown in Table 1 to-
gether with their signs of the GLM coefficient. The final GLM
model had a R2 of 0.65 and an RMSE of 9.89. The correla-
tion between the actual VAS scores (M=60.38, SD=16.65) and
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Figure 2: Accuracy results for classifying healthy and
dysarthric speech with different subsets of features based on
their significance in Table 1.

the predicted scores was 0.80 (p < .0001). Figure 1 presents a
scattergram between the actual and predicted scores.

3.2. Classification for distinguishing healthy and dysarhtic
speech

As mentioned in Section 2.3, we applied LDA on 24 subsets
of the 24 features to classify healthy and dysarthric speech. In
detail, we first applied LDA on the feature subset of top 1 (i.e.,
the first feature in Table 1). Then, we applied LDA on the sub-
set of top 2 (i.e., the first and second features in Table 1) and
repeated this procedure until all 24 features selected by the fi-
nal GLM model were involved (i.e., the subset of top 24). This
led to accuracy results of classification with the number of fea-
tures ranging from 1 to 24, as shown in Figure 2. We observed
the highest accuracy value of 98.06% when using the subsets
of top 17, top 21, and top 22. We also examined the accuracy
results per item to study whether speech materials (i.e., word
lists, SUS, and meaningful sentences) play a role in the classi-
fication. We did not observe any high error values for specific
speech materials nor for specific items.

In addition to applying LDA on subsets of features,
we exhaustively applied LDA on each pair of 24 fea-
tures selected by the final GLM model. We observed that
with the mean of the second formant frequency (F2) band-
width (i.e., F2frequency sma3nz stddevNorm in eGeMAPS
feature set script) and the coefficient of variation of F2 (i.e.,
F2bandwidth sma3nz amean), we can already reach a compa-
rable, high accuracy value of 96.11%. The scattergram for these
two features is presented in Figure 3 with different colours for
healthy and dysarthric speech.

4. Discussion
In this study, we explored the usefulness of acoustic-phonetic
features in automatic assessments of dysarthric speech. In par-
ticular, we examined to what extent the acoustic-phonetic fea-
tures can be used to predict intelligibility ratings and to classify
healthy and dysarthric speech. Briefly, to a certain extent, the
acoustic-phonetic features can be used to predict intelligibility
ratings, and to a great extent, the acoustic-phonetic features can
be used to classify healthy and dysarthric speech. Below we
discuss our results in more detail.

Figure 3: Scattergram of coefficient of variation of F2 (%) vs.
mean of F2 bandwidth (Hz) for healthy (orange) and dysarthric
(blue) speech.

4.1. Regression for predicting intelligibility ratings

Regarding the regression analysis between acoustic-phonetic
features and the intelligibility ratings, it can be clearly seen in
Table 1 that most of the selected features showed to be signifi-
cant in explaining the variance in the intelligibility ratings. On
the other hand, it is difficult to interpret how every single fea-
ture contributes to predicting intelligibility ratings because they
are selected through a stepwise approach and these features may
work in an interactive manner in the prediction.

In addition, the 0.65 proportion of the variance in intelli-
gibility ratings can be explained by the 24 features in Table1
which were selected by a stepwise linear regression analysis.
Also, the correlation between the actual and predicted VAS
scores in the final regression model is very strong [19] as shown
in Figure 1. These findings seem to be in line with that by
Xue et al. [15]. The authors reported a moderate correla-
tion between intelligibility ratings obtained through VAS and
an acoustic-probability index calculated based on 15 acoustic-
phonetic features, which were related to pitch, intensity, and
formant frequency, extracted from both healthy and dysarthric
speech. Also, many researchers examined intelligibility mea-
sures [10] and acoustic features at different granularity levels
[9] [8] before and after speech therapy and found significant
differences although the differences were speaker-dependent.
These findings together with the results of this study further in-
dicate the usefulness of acoustic-phonetic features in automatic
assessments of dysarthric speech.

On the other hand, although the regression model led to a
very strong correlation between the actual and predicted VAS
scores in Figure 1, some spots presenting dysarthric speech at
the bottom-left part in Figure 1 were not well predicted and had
higher predicted scores compared to the actual VAS. A pos-
sible explanation is that the amount of items with relatively
low VAS scores is limited, thus leading to worse predictions.
We also observed several spots presenting healthy speech had
lower predicted scores. This may be due to the overlap of
VAS scores between healthy and dysarthric speech. However,
having overlaps of intelligibility measures between healthy and
dysarthric speech is inevitable due to the nature of how intel-
ligibility is measured involving human listeners. Thus, these
findings should be further elaborated in a larger dataset.
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4.2. Classification for distinguishing healthy and dysarthric
speech

Regarding the classification of speech as healthy or dysarthric,
the usefulness of the acoustic-phonetic features is supported by
the following findings. First, the mean of F2 bandwidth, which
was the most significant feature selected through the stepwise
regression analysis, resulted in a high classification accuracy
value of 82.50%. Second, when having this feature and the co-
efficient of variation of F2 as independent variables, the accu-
racy increased to 96.11%. Also, Figure 3 shows a clear distinc-
tion between healthy and dysarthric speech. Third, although the
classification accuracy decreased when having the three most
significant features, it remains above 78% as shown in Figure 2.
Fourth, the accuracy values gradually increased when involving
more features as independent variables. These results suggest
that stepwise regression analysis can be used as a method of
feature selection, and the selected features can result in good
classification results.

Furthermore, it is expected that the accuracy increases
when the number of features in classification increase because
more features can help classify healthy and dysarthric speech.
However, having more features may increase the possibility of
having an overfitting issue. Therefore, as explained in Section
2.3, we applied both LASSO and stepwise regression analyses
for feature selection. As the consequence, it is much less likely
to have the overfitting issue since the number of features has
been reduced from 103 to 24 and is much smaller compared to
the number of items (i.e., 104). Also, we applied LOSO cross-
validation and used a simple linear model for classification.

Note that although the classification accuracy gradually in-
creased when involving more features, we observed decreases
in the curve in Figure 3. It might be that some features selected
by the stepwise regression analysis with high significance may
not contribute to better classification results. Also, although we
exhaustively examined each pair of the 24 features for classifi-
cation and found the most successful pair of features (i.e., the
mean of F2 bandwidth and the coefficient of variation of F2),
this exhaustive-examination approach may not be feasible when
using larger datasets. On the other hand, simply involving more
features can lead to very high accuracy values that were com-
parable to or higher than that of the most successful pair of fea-
tures, and thus, it is more feasible than exhaustively examining
all pairs of features, especially on larger datasets.

Moreover, one of the benefits of using acoustic-phonetic
features instead of embeddings based on sophisticated ML al-
gorithms is that we can better interpret the most important fea-
tures. Also, these features are more useful in helping speech-
language therapists for diagnosis. For example, we found the
most successful pair of features (i.e., the mean of F2 bandwidth
and the coefficient of variation of F2) in distinguishing healthy
and dysarthric speakers as shown in Figure 3. Taking together
the signs of the coefficients in the GLM model presented in Ta-
ble 1, it seems that F2 frequencies of healthy speech are rather
spread according to a higher standard deviation (sign = ‘+’), and
the F2 bandwidth is smaller according to a lower mean (sign =
‘-’) compared to dysarthric speech. Since F2 contributes to dis-
tinguishing different vowels [20], these results seem to indicate
that healthy speakers can better control their vowel articulation
as they can place their F2 widely (high standard deviation) and
precisely (small bandwidth).

4.3. Limitations

One limitation of this study may be that we exhaustively ex-
amined every pair of features for classification to find the most
relevant ones. This may not be feasible when larger datasets
or more features are involved. Also, some features, such as
features about Mel-Frequency Cepstral Coefficients (MFCC)
as reported in Table 1, are more difficult to interpret than F2
frequency. Another limitation is that the speech examined in
this study is read speech, whereas other speech types, such as
spontaneous speech, may have different acoustic characteris-
tics, leading to different results. Also, we used the data that
was collected by others. Due to the General Data Protection
Regulation, we cannot make the data public. Future research
may elaborate our findings on a public dataset.

4.4. Future research

Future research may further elaborate our findings on a larger
dataset that has more speakers. Using a larger dataset allows for
more sophisticated statistical analyses and reduces the risk of
having overfitting problems. It may also be interesting to repeat
our analyses for different measures of intelligibility obtained at
different levels of granularity or for a different language. Fu-
ture research could also extend the exploration of this study to
features based on different syntactic-semantic structures. They
may lead to different results for regression or classification ex-
aminations.

5. Conclusions
This study explored the usefulness of acoustic-phonetic features
for predicting intelligibility ratings measured through VAS and
for classifying healthy and dysarthric speech. By using LASSO
and the stepwise linear regression analyses, we succeeded in re-
ducing the number of features from 103 to 24. By using these 24
features, an R-squared score of 0.65 was found. These 24 fea-
tures also contributed to the classification of speech as healthy
or dysarthric by the LDA model, with the highest accuracy of
98.06% using the first 17 features based on the significance re-
ported by the stepwise linear regression model. By exhaustively
examining every pair of the 24 features, we found the most suc-
cessful pair of features, i.e., the mean of F2 bandwidth (i.e.,
F2bandwidth sma3nz amean) and the coefficient of variation
of F2 (i.e., F2frequency sma3nz stddevNorm). These two fea-
tures alone were able to obtain a similar, high accuracy value
of 96.11%. These results seem to indicate that it is possible
to use acoustic-phonetic features for automatic assessments of
dysarthric speech.
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