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Abstract
Vector quantized variational autoencoders (VQ-VAE) are well-
known deep generative models, which map input data to a latent
space that is used for data generation. Such latent spaces are
unstructured and can thus be difficult to interpret. Some ear-
lier approaches have introduced a structure to the latent space
through supervised learning by defining data labels as latent
variables. In contrast, we propose an unsupervised technique in-
corporating space-filling curves into vector quantization (VQ),
which yields an arranged form of latent vectors such that adja-
cent elements in the VQ codebook refer to similar content. We
applied this technique to the latent codebook vectors of a VQ-
VAE, which encode the phonetic information of a speech signal
in a voice conversion task. Our experiments show there is a
clear arrangement in latent vectors representing speech phones,
which clarifies what phone each latent vector corresponds to
and facilitates other detailed interpretations of latent vectors.
Index Terms: interpretable latent space, phonetic analysis,
space-filling curves, vector quantization, voice conversion

1. Introduction
As a well-known type of deep generative models, vector quan-
tized variational autoencoders (VQ-VAE) [1] have recently
gained success in a wide range of applications such as voice
conversion [2, 3], image generation [4], speech and audio
coding [5], music generation [6], and text-to-speech synthe-
sis [7, 8]. They can model complex high-dimensional data to
an abstract latent space that captures the statistical properties of
the data. Hence, they are useful for data generation, feature ex-
traction, and data compression purposes while generating high-
quality reconstructions from the latent space. However, this la-
tent space has neither interpretable nor explorable structure. For
example, it is not clear what information each latent codebook
vector captures, or what property each latent space dimension
expresses in a form understandable by human users.

In generative models, the term interpretability for the latent
space is considered from two different perspectives as follows:
Introducing structure into the latent space: In this line of
work, there are two different types of approaches; supervised
and unsupervised. By using labeled data, supervised meth-
ods [9, 10, 11] employ data labels to define an isolated subgroup
in the latent space for each specific label. After training, they
have a learned subgroup of the latent representation for each
class of data, which is easy to interpret and use for data manip-
ulation and generation. However, these methods require human
labeling, and they might critically prevent the learned represen-
tations to capture some inherent structures existing in the data,
which the human labeler is unaware of [12]. On the other hand,
unsupervised methods [13, 14, 15] aim to learn a disentangled

Figure 1: (a) A vector quantizer for a Gaussian distribution
(gray points) with K = 64 codebook vectors (blue points) and
the corresponding Voronoi regions (black lines). (b) A space-
filling vector quantizer (thick black line) for the same data (the
point marked by Ø in red shows an outlier corner point).

latent space. These methods try to model the generative factors
existing in the data in a way that changes in each latent dimen-
sion only modify a single property of the generated data while
keeping other generative factors invariant to these changes. In
other words, they force different dimensions of the latent space
to be independent of each other. Hence, they render an inter-
pretable latent space such that each specific dimension corre-
sponds to a unique generative factor. While learning a disentan-
gled representation, these models are however less efficient in
achieving high quality and diverse generations [12].
Exploring meaningful directions in the latent space: The
methods proposed in [12, 16, 17] aim to discover directions
in the latent representations such that moving on these direc-
tions yields humanly interpretable image transformations such
as a change in aging, gender, hairstyle, lighting and etc. They
usually detect these directions by analyzing the latent space of
pretrained generative models and their interpretability implies
achieving a controllable generation process by manipulation of
latent vectors along the detected directions.

In this paper, we propose a novel tool to explore the under-
lying structure in the latent space of a vector quantized varia-
tional autoencoder (VQ-VAE) used in the voice conversion task
presented in [2]. To this end, we incorporate space-filling curves
into the vector quantization module such that codebook vec-
tors of the latent space are the actual corner points of a space-
filling curve. Since space-filling curves have inherent struc-
ture, they automatically create a shapely arrangement for the
latent codebook vectors in an unsupervised learning manner.
Hence, contrary to the supervised approaches [9, 10, 11], our
method does not incur any human labeling and manual restric-
tions on the learned latent space. To make our method inter-
pretable, it requires the user to study the learned latent space
entirely only once by observation. Experiments demonstrate
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Sentence = She had your dark suit in greasy wash water all year

Figure 2: (top) Codebook vector indices for the speech signal using our proposed space-filling vector quantizer (in dark blue circles)
and the ordinary vector quantizer in [2] (in gray crosses). (bottom) Mel-spectrogram of the speech signal including codebook vector
indices corresponding to speech frames.

that our proposed space-filling vector quantizer achieves a co-
herently structured and easily interpretable representation for
latent codebook vectors, which represent phonetic information
of the input speech. Accordingly, there is an obvious distinction
of various phonetic groupings such as {consonants vs. vowels},
{fricatives vs. nasals vs. approximants vs. ...}, and we can
simply tell apart which phone each codebook vector represents.
In addition, similar phones within a specific phonetic group are
encoded next to each other in the latent codebook space. Specif-
ically, the novelties of this work are twofold:

1. Introducing space-filling vector quantizer; a new tool for un-
supervised modeling of a data distribution in a structured
way.

2. Applying the proposed tool for interpretation and exploration
of latent space (specifically phonetic analysis in this study).

2. Methods
Vector quantization [19] is a data compression technique (sim-
ilar to k-means) that is used in a wide range of applications such
as speech coding [20], voice conversion [2, 3], and image com-
pression [21]. For an input vector x ∈ R1×D and codebook
matrix C ∈ RK×D , vector quantization is defined as

x̂ = argmin
ck

∥x− ck∥2, 0 ≤ k < K, (1)

where ∥·∥2 is the Euclidean distance and ck ∈ R1×D is the
closest codebook vector from C to the input vector x in terms
of Euclidean distance. In other words, vector quantization maps
the input vector to the closest codebook vector.

Space-filling curve is a piece-wise continuous line gener-
ated with a recursive rule and gets bent until it completely fills
a multi-dimensional space when repeated infinitely. A common
type of space-filling curve is known as the Hilbert curve [22],
in which the corner points are defined using a specific formu-
lation at each iteration. Getting intuition from it, we can thus
think of vector quantization as mapping input data points on a
space-filling curve (rather than only mapping the input exclu-
sively on codebook vectors). Therefore, we incorporate vector
quantization into space-filling curves, such that our proposed
space-filling vector quantizer models a D-dimensional data dis-
tribution by continuous piece-wise linear curves whose corner

points are vector quantization codebook entries. Fig. 1 illus-
trates a vector quantizer and its space-filling variant applied to
a Gaussian distribution.

Proposed space-filling vector quantizer (training): To
map the input vector x to a space-filling line during training, we
use a dithering technique that prevents codebook vectors from
diverging. To this end, we define a dithered codebook by in-
terpolating at random points between subsequent vectors of the
current base codebook. This dithered codebook is then used as
in conventional vector quantization. It means, we map the input
vector to the closest codebook vector from the dithered code-
book as

x̂ = (1− λ)cj + λcj+1, (2)
where cj and cj+1 are the vectors from the base codebook
which their interpolation is the closest dithered codebook vector
to the input vector, and λ is the interpolation (dithering) factor.
To apply dithering, we sample λs from a uniform distribution
of U[0, 1) during training that guarantees interpolating at ran-
dom points between subsequent base codebook vectors. Such
interpolation enforces an assumption of continuity between sub-
sequent codebook elements and randomizing the interpolation
implements a dithering or regularization effect. If we intend to
train the space-filling vector quantizer module exclusively (in-
dependent from any other module that requires training) on a
distribution, we can use mean squared error (MSE) between the
input vector and its quantized version as the loss function

MSE(x, x̂) = ∥x− (1− λ)cj − λcj+1∥2. (3)

In this case, we do not need to pass gradients through the
non-differentiable argmin function in Eq. (1) (gradient collapse
problem [23]), since x̂, and as a result, the MSE loss are a func-
tion of leaf variables (cj , cj+1) which need gradients. However,
if we intend to train the space-filling vector quantizer jointly
with other modules, we need to pass the gradients through
argmin function using our recently proposed noise substitution
in vector quantization (NSVQ) technique [23] through which
the final quantized input vector is defined as

x̃ = x+ ∥x− x̂∥ · v

∥v∥ , (4)

where v is a vector sampled from a zero-mean, unit-variance
normal distribution (N (0, 1)).
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Figure 3: (a) Histogram of codebook vector indices for phonetic groups. (b) Confusion matrix representing the Jensen-Shannon
distance [18] between phonetic groups. (c) Heatmap of Euclidean distance between all codebook vectors. (d) Heatmap representing
the number of times each codebook vector (each column) occurs immediately after a specific codebook vector (each row).

Proposed space-filling vector quantizer (inference):
Through analytical minimization of the mean squared error
(MSE) in Eq. (3) between x and x̂ in the interval between i
and i+ 1, we find the optimal λ as

λoptimal =
(ci+1 − ci)

T (x− ci)

∥ci+1 − ci∥2
. (5)

At inference, to find where an input vector x is mapped on the
space-filling curve, we first find the index k∗ of the closest code-
book vector to x using Eq. (1). Then, we consider two possible
intervals of {ck∗−1, ck∗} and {ck∗ , ck∗+1} for mapping. By
using Eq. (5) and Eq. (2), we calculate λoptimal and x̂ for each
interval, respectively. Then, we calculate the MSE between in-
put vector x and two calculated mappings x̂ for both intervals
and map x to the interval which gives a smaller MSE value.

3. Experiment
To evaluate how our proposed space-filling vector quantizer
(SFVQ) finds the structure in the latent space, we applied it
to a voice conversion task based on a vector quantized varia-
tional autoencoder (VQ-VAE) network [2]. The vector quan-
tization (VQ) module in VQ-VAE is an information bottleneck
that learns a discrete representation of speech that captures pho-
netic content and discards the speaker-related information. In
other words, VQ codebook vectors are expected to collect only
the phone-related content of the speech. We trained the VQ-
VAE network from scratch using the same settings as in the
original paper [2]. The only difference is that we reduced the
number of codebook vectors from 512 to 256 for the VQ mod-
ule, since we wanted to impose a more strict constraint to the
bottleneck, to make sure that there is no speaker-related infor-
mation leaked to the codebook vectors [24]. We trained the

model on the ZeroSpeech 2019 Challenge English dataset [25]
(containing about 15 h of speech from 102 speakers) for 500 k
training batches (batch size = 52) using Adam optimizer with
the initial learning rate of 4 · 10−4. We halved the learning
rate after 300 k and 400 k training batches. After training, we
discarded the trained VQ and decoder modules and kept only
the trained encoder which learned to extract only phone-level
information of input speech signal. Then, we froze the encoder
parameters and trained our proposed SFVQ (with 256 codebook
vectors or corner points) on what the encoder generates from the
entire ZeroSpeech dataset. The PyTorch implementation of our
proposed SFVQ is publicly available1.

4. Results and discussion
We evaluate the performance of our space-filling vector quan-
tizer (SFVQ) on its ability to find the structure in the latent
codebook vectors representing phonetic information in a voice
conversion task [2]. For our evaluations, we used the TIMIT
dataset [26] (both train and test sets), since it contains phone-
wise labeled data using the phone set from [27]. It also indicates
the consistency of our model by employing different datasets
for training and evaluation. For our experiments, we use the
phonetic grouping based on [28] as
• Plosives (stops): {p, b, t, d, k, g, jh, ch}
• Fricatives: {f, v, th, dh, s, z, sh, zh, hh, hv}
• Nasals: {m, em, n, nx, ng, eng, en}
• Vowels: {iy, ih, ix, eh, ae, aa, ao, ah, ax, ax-h, uh, uw, ux}
• Diphthongs: {ey, aw, ay, oy, ow}
• Approximants (semi-vowels): {l, el, r, er, axr, w, y}
• Silence: {h#}.

1https://gitlab.com/speech-interaction-technology-aalto-university/sfvq
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Figure 4: Histogram of codebook vector indices for fricative phones.

To analyze the performance of our proposed SFVQ, we pass
the labeled TIMIT speech files through the trained encoder and
SFVQ modules, respectively, and extract the codebook vector
indices corresponding to all existing phones in the speech. As
explained in section 2, we expect our SFVQ to map similar
phonetic contents next to each other. To examine this expecta-
tion, in Fig. 2 we visualize the Mel-spectrogram of the sentence
”She had your dark suit in greasy wash water all year”, and its
corresponding codebook vector indices for the ordinary vector
quantizer (VQ) in [2] and our proposed SFVQ. We observe that
the indices of the ordinary VQ [2] does not have any particular
structure. However, when using our proposed SFVQ, there is a
clear structure for the codebook vector indices. The indices for
the frames containing phones {sh, s, z} within the words {she,
wash, suit, greasy} are uniformly distributed next to each other
throughout the frames. In addition, silence frames containing
phone {h#} and some other low energy frames containing {kcl,
tcl, gcl: k, t, g closures} within the words {dark, suit, greasy}
are uniformly located next to each other in the range [0-20]. No-
tice that we have informally found that Fig. 2 remains consis-
tent for sentences with the same phonetic content, even across
speakers with different genders, speech rhythms, and dialects.

Fig. 3.a demonstrates the histogram of codebook indices
for each phonetic group. Histograms are first smoothed by
a Blackman windowing with window size 7 and then nor-
malized by their maximum values. At first glance, we ob-
serve that consonants:{silence, plosives, fricatives, nasals} and
vowels:{vowels, diphthongs, approximants} can be separated
around index 125 (apart from the peak near index 20). We also
observe that the most prominent peaks of different groups are
separated in different parts of the histogram. There are two
exceptions; First, the silence part in the range [30-50], refers
to frames labeled as silence, but still contain a little energy in
their Mel-spectrogram, making them sound similar to fricatives
of {hh, hv} and some plosives. Second, the peak near index
20 (for vowel, diphthong, and approximant groups) refers to
phones containing sounds similar to the approximant {y} ({iy,
ih, ix} from vowels, and {ey, ay, oy} from diphthongs).

To investigate how well our proposed SFVQ preserves
similarity for adjacent codebook vectors, Fig. 3.c presents
the heatmap of Euclidean distance between codebook vec-
tors. It is expected that the black squares (neighboring code-
book vectors) along the diagonal axis represent the phonetic
elements that share similar properties. Based on subjec-
tive observations, we could identify such black squares at:
[0-20]=[silence:{h#}], [30-50]=[fricatives:{hh,hv}, plosives],
[64-81]=[fricatives:{s, z, sh, zh}], [105-125]=[nasals], [126-
143]=[approximant:{y}, vowels:{iy, ih, ix}, diphthongs:{ey,
ay, oy}], [210-230]=[vowels:{ao, aa, ah, ax, ax-h, uw, ux,
uh}, diphthongs:{aw, ow}, approximants:{l, el, w}], [244-
255]=[approximants:{r ,er, axr}]. In addition, the big black
squares at [0-104]=[consonants (except nasals):{silence, frica-
tives, plosives}] and [144-255]=[vowels:{vowels, diphthongs,

approximants}] show a clear separation between consonants
and vowels.

To quantify the distance between different phonetic groups,
we calculated the Jensen-Shannon distance (JSD) [18] between
each pair of histograms (see Fig. 3.b). Given two histograms,
the larger the JSD value, the more dissimilar the corresponding
phonetic groups are. Based on the JSD values, we again observe
a clear distinction between consonants and vowels. Moreover,
the most disparate histograms are silence vs. vowels, and the
most similar ones are vowels vs. diphthongs.

In Fig. 2 we can observe that subsequent frames often fea-
ture similar phonemes. To characterize such similarity over
time, Fig. 3.d shows the number of times (in log2-magnitude)
each codebook vector (each column) occurs immediately after a
specific codebook vector (each row). A few important observa-
tions; 1) Vowels:{vowels, diphthongs, approximants} are less
probable to happen immediately after silence (specifically si-
lence indices [0-10]). 2) Nasals are less probable to happen im-
mediately after plosives and fricatives. 3) Plosives and fricatives
are less probable to happen immediately after nasals, except
fricatives of {s, th} like in the words {hamster, fancy, warmth,
length} and plosives of {k, p} like in the words {bank, link,
input, jump}. 4) According to histograms in Fig. 3.a and due
to the blank black area in the range [165-175], it is inferred that
the codebook vectors in this range do not model any phonetic
content (they are outliers which do not pass through the data
distribution similar to the corner point marked by Ø in Fig. 1.b).

As an example for distribution of phones within a phonetic
group, Fig. 4 illustrates the histograms of all fricatives. His-
tograms are first smoothed by a Blackman windowing with win-
dow size 7 and then normalized by their maximum values. By
observing the most prominent peak for each phone, we find out
the peaks of similar phones are located next to each other. To
elaborate, we listed similar phones and their corresponding peak
index here as {f:51, v:50}, {th:78, dh:80}, {s:71, z:67, sh:65,
zh:67}, {hh:46, hv:50}. Except {hh, hv} phones, fricatives are
mainly located in the range [50-85]. Further structures can be
readily identified from all provided figures by visual inspection.

5. Conclusions
Vector quantized variational autoencoders (VQ-VAE) are well-
known deep generative models that have an unstructured latent
space that is difficult to interpret. In this paper, we proposed
the space-filling vector quantizer (SFVQ) which reveals an un-
supervised, coherently structured latent space in a VQ-VAE-
based voice conversion task, enabling detailed phonetic inter-
pretations of the latent space. The proposed SFVQ can also as-
sist interpretation of the latent space for other types of data (e.g.
images) in other applications. By using the proposed SFVQ,
we can thus interpret and explain how unsupervised deep neu-
ral networks internally represent information which in turn can
help us better understand and trust machine learning models.

309



6. References
[1] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural dis-

crete representation learning,” in Proceedings of NeurIPS, 2017,
pp. 6309–6318.

[2] B. van Niekerk, L. Nortje, and H. Kamper, “Vector-quantized neu-
ral networks for acoustic unit discovery in the zerospeech 2020
challenge,” in Proceedings of Interspeech, 2020, pp. 4836–4840.

[3] S. Ding and R. Gutierrez-Osuna, “Group latent embedding for
vector quantized variational autoencoder in non-parallel voice
conversion,” in Proceedings of Interspeech, 2019, pp. 724–728.

[4] A. Razavi, A. van den Oord, and O. Vinyals, “Generating di-
verse high-fidelity images with VQ-VAE-2,” in Proceedings of
NeurIPS, 2019, pp. 14 866–14 876.
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