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Abstract
RNN-Transducers (RNN-Ts) have gained widespread accep-
tance as an end-to-end model for speech to text conversion be-
cause of their high accuracy and streaming capabilities. A typ-
ical RNN-T independently encodes the input audio and the text
context, and combines the two encodings by a thin joint net-
work. While this architecture provides SOTA streaming accu-
racy, it also makes the model vulnerable to strong LM bias-
ing which manifests as multi-step hallucination of text without
acoustic evidence. In this paper we propose LOOKAHEAD that
makes text representations more acoustically grounded by look-
ing ahead into the future within the audio input. This technique
yields a significant 5% − 20% relative reduction in word error
rate on both in-domain and out-of-domain evaluation sets.
Index Terms: speech recognition, RNN transducer, acoustic
hallucinations

1. Introduction
RNN-Transducers (RNN-Ts) [1] are the predominant choice for
end-to-end automatic speech recognition (ASR) offering both
high accuracy and streaming capabilities [2, 3]. They comprise
a speech encoder that can process speech to generate an acous-
tic representation and a text encoder that is conditioned on label
outputs from previous time-steps to generate a textual represen-
tation. Both the acoustic and textual representations are further
combined by a simple joint network to predict the final out-
put sequence. Apart from making the model streaming-friendly,
separate speech and text modules in RNN-Ts also allow for text-
only data to be used in training the text encoder [4].

While having separate speech and text modules in RNN-Ts
has its benefits, it also makes the model vulnerable to strong
biases from the language model. Driven by strong textual
priors, the representation from the text encoder could be very
biased towards an output unit that is eventually adopted by the
joint network but does not have any acoustic correlates in the
speech input. Such outputs could be considered hallucinations
that arise due to the overconfidence of the language model in
the RNN-T [5]. This problem is more severe when the RNN-T
is used to decode out-of-domain utterances. Apart from the
more egregious hallucination errors, we also find that language
model biases in RNN-Ts lead to word-boundary errors. For
example, “villeroy took” is mispredicted by an RNN-T baseline
as “villar I took”.

Hallucinated outputs have been studied a lot more in the
context of neural machine translation where the decoder lan-
guage model hallucinates content that is not aligned to the
source sentence [6]. In contrast, the problem of hallucination
in RNN-Ts, that stems from its very design, has been far less
studied and demands more attention.

In this work, we propose LOOKAHEAD as a fix for the
problem of hallucinations in RNN-Ts. LOOKAHEAD aims to
make the textual representations more acoustically grounded
by looking ahead into the future within the speech signal. To
achieve such a lookahead without interfering with the RNN-T’s
online decoding capabilities, we extract a limited number of
lookahead output tokens for each frame of the input speech
using only the acoustic encoder and further use these extracted
tokens to modify the textual representation. This technique
yields significant reductions in word error rates (WERs)
on the established Librispeech benchmark and a variety of
out-of-domain evaluation sets. We also show that beyond
improving WERs, LOOKAHEAD results in predictions that are
more acoustically faithful to the speech input. For example,
the reference “la valliere” is misrecognized as “the valet” by an
RNN-T baseline, while an RNN-T baseline with LOOKAHEAD
predicts “lavalier”.

Contributions: Thus, overall the contributions of this pa-
per are as follows: (1) We highlight the problem of hallucina-
tion in SOTA online ASR models and attribute it to the speech
independent encoding of text representations. (2) We propose a
fix based on enriching text representations with a lookahead of
future tokens extracted from the audio. (3) We present a sim-
ple extension of the RNN-T architecture called LOOKAHEAD
with very modest computational overheads. (4) We present an
evaluation on three benchmarks on various settings of model
sizes and show that our proposal improves WER and reduces
hallucination significantly.

2. Background: RNN Transducer
Let the input audio be denoted by x = {x1, x2, x3, ...xT }
where each xt represents the acoustic features at time t. Let the
corresponding text transcript be y = {y1, y2, y3...yU} where
yu ∈ V denotes the uth output token drawn from a vocabu-
lary V . One of the most distinguishable features of an RNN-T
is the presence of two separate encoders for text and acous-
tic signals respectively. The acoustic encoder (AE) takes as
input x = {x1, x2, x3, ...xT } and generates the acoustic en-
coded representation h = {h1, h2, h3, ...hT }. The text or
language encoder (LE) generates representation gu appropri-
ate for the next output token as a function of previous tokens
y<u = y1 . . . , yu−1

gu = LE(y<u) ht = AE(x, t)

A Joint Network (JN) combines the two encodings for each
t ∈ [1 . . . T ] and each u ∈ [1, . . . , U ] to generate a lattice S.
Each cell of the lattice represents a state s(t, u), from which
we generate a probability distribution of a token belonging to
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Figure 1: Architecture of LOOKAHEAD. We first calculate Piam

which is used to calculate Prnnt. An illustrative example with
w = 3 is provided in olive. ŷt is the argmax output associated
with frame ht.

vocabulary V

P (yt
u|xt,y<u) = softmax{JN(ht ⊕ gu)} (1)

where P (yt
u) is the probability of emitting yu at time t. The

vocabulary includes a special blank token ϵ.
Using this probability lattice, the RNN-T estimates the con-

ditional distribution P (y|x) by marginalizing over all possible
monotonic alignments of acoustic frame t with output token po-
sition u on the lattice. This can be computed in polynomial time
using a DP-sum method [1]. During inference, high-probability
outputs are generated using beam-search.

2.1. Related Work

The inability of RNN-T models to generalize to out-of-domain
utterances has been previously well-documented [7]. Previous
approaches have adapted RNN-T models to new domains via
shallow fusion with an external LM [8, 9, 10, 11, 12] and dis-
counting RNN-T scores using an external LM [13] or an im-
plicit LM derived from the RNN-T [14, 15, 5]. Apart from
these inference-time techniques, there have also been other ap-
proaches that required training-time interventions such as sub-
word regularization [11], augmenting pronunciation dictionar-
ies [12, 16] and text-only adaptation of the RNN-T’s language
encoder [4, 17, 18].

Apart from adaptation-based techniques, prior work has
also explored many approaches that aim at improving interac-
tions between the acoustic encoder (AE) and the language en-
coder (LE) of the RNN-T. These approaches have focused on
more complex mechanisms to combine the AE and LE outputs
rather than simply adding the respective representations [19,
20], using quantization in the LE [21] and fixing overconfident
LE predictions in the RNN-T lattice [22]. Similar in spirit to our
technique are non-causal models [23, 24, 25, 26, 27] that refer
to future information via a self-attention or convolution mech-
anism. However, all these methods peek into the future at the

level of AE and thus with increased number of layers, the effec-
tive window size to the future increases which is not desirable
in streaming applications.

3. Our Approach
In the RNN-T architecture the text and the audio are encoded
independently and combined using a thin joint layer. The text
encoding gu captures the next token state conditioned only on
tokens generated before it. If the language model priors are
strong, it is possible for the text encoding gu to strongly pre-
fer a word unit, and to bias the softmax to generate that unit,
even if that has little agreement with the acoustic input. This
often manifests as hallucinated words that are fluent as per the
language model, but which have no support with the acoustic
input. In Table 4, we present examples of such hallucinations.
We observe that rare words, e.g., word “MAGATAMA” in the
first example, gets recognized as “BY THE TOWN” which has
little acoustic overlap with the utterance.

Next we present our approach called LOOKAHEAD of fix-
ing this mismatch. We identify that hallucinations are generated
by representations gu which have been computed independent
of the acoustic input. Our key insight is to improve the LE rep-
resentation gu by looking ahead a few tokens into the future
from the acoustic input. However, implementing this insight,
without adversely impacting the efficient online operation of the
RNN-T model is non-trivial. We perform this modification in
two steps. First, we extract from the acoustic encoder, a looka-
head of k tokens after each frame t of the acoustic input. In
Section 3.1 we present how we do that. Second, we modify gu
with the extracted future tokens to get now a time-aware, acous-
tically informed encoding gu,t. Section 3.2 presents the details
of this step. Overall modified architecture of our approach ap-
pears in Figure 1.

3.1. Extraction of Lookahead tokens from the Acoustic En-
coder

We use the notion of implicit acoustic model (IAM) and gener-
ate a probability distribution over vocabulary tokens based on
only the acoustic signals ht

Piam(y|ht) = softmax{JN(ht ⊕ 0)} (2)

This distribution is supervised using gold transcripts by
marginalizing over all non-blank tokens, much like the regular
RNN-T loss.

Next, for each frame of x we get the most likely output
based on acoustic signal ht.

ŷt = argmax
y

Piam(y|ht) ∀t (3)

We do this for all input frames. On this set of T tokens, at each
t, we find the first w non-blank tokens after t and call it ỹw

t .
We choose small values of w (e.g., 2 or 3) to ensure that we
still inherit the streaming capabilities of the underlying RNN-T
model. The ỹw

t provides a look ahead into the future tokens
after each t based purely on the acoustic input. Figure 1 shows
an example where for t = 1, w = 3 we extract a ỹw

t comprising
of the first three non-blank outputs from the acoustic model.

3.2. Modifying Text Encoding with Lookahead Tokens

With the presence of the above future context, we condition the
text encoding gu at each t using a simple FFN F as

ĝt,u = F (gu, ỹ
w
t ) (4)
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Split
Accent US Eng Can Ind Scot Phil HK

Train 55.3 / 42023 / 517 45.0 / 34615 / 1856 35.6 / 24814 / 575 51.2 / 34890 / 982 13.8 / 8671 / 85 2.8 / 2035 / 47 NA
Dev 4.3 / 3089 / 78 4.2 / 3465 / 62 4.0 / 3033 / 68 5.8 / 3673 / 50 2.6 / 2004 / 33 1.5 / 1009 / 39 NA
Test 8.0 / 5363 / 93 6.4 / 5167 / 71 6.6 / 5008 / 140 7.8 / 5094 / 67 2.8 / 2001 / 37 1.6 / 1114 / 22 3.5 / 2750 / 111

Table 1: Statistics of the MCV dataset. Each cell lists duration (in hrs)/# utterances/# of speakers in the subset.

Dataset Model Librispeech-Test MCV-Test
dev-clean test-clean dev-other test-other US Eng Can Ind Scot Phil HK

L100+P Baseline 7.1 7.6 20.5 20.8 46.5 35.6 27.0 69.2 40.1 46.3 48.1
LOOKAHEAD 6.4 6.6 18.8 19.1 44.9 33.2 24.8 68.6 37.3 42.6 45.7

L360+P Baseline 4.2 4.5 13.5 13.1 38.1 23.6 19.5 56.9 30.2 34.4 39.1
LOOKAHEAD 4.0 4.3 12.8 12.5 36.9 22.5 19.2 56.6 28.9 33.2 37.5

L960 Baseline 3.1 3.2 8.6 8.5 29.2 15.0 16.1 35.5 23.1 23.9 29.7
LOOKAHEAD 3.2 3.3 8.3 8.4 28.8 14.6 15.9 35.2 23.0 23.8 29.0

MCV Baseline 18.9 18.8 31.4 31.7 27.9 18.1 19.1 27.4 25.8 27.2 31.9
LOOKAHEAD 16.1 15.8 27.6 28.2 23.8 14.3 15.3 24.2 21.9 23.9 27.8

Table 2: Main results of baseline vs LOOKAHEAD.

The remainder of the RNN-T pipeline stays the same and we
pass along the new LE representation ĝt,u to the JN for further
processing

PLA(y
t
u|x, t,y<u) = softmax{JN(ht ⊕ ĝt,u)} (5)

Thus, our overall training is a sum of losses over the gold
transcript on marginalizations of PLA, and of Piam.

4. Experiments and Results
In this section, we present various results comparing our method
to an existing SoTA baseline RNN-T ASR system.

4.1. Datasets

We use the popular Librispeech benchmark [28] in three dif-
ferent well-known settings of varying training durations. We
also use the Mozilla Common Voice dataset to derive accented
out-of-domain speech samples. These are detailed below:

1. L100: This is the well-known Librispeech-100 dataset which
is a 100 hour subset of the Librispeech corpus[28].

2. L360: This is a 360 hour subset of the Librispeech corpus.
3. L960: This is the complete 960-hour Librispeech corpus.
4. MCV: This is a dataset obtained from the Mozilla Common

Voice [29] Version 7.0 corpus. Using this dataset, we create a
200hr training subset consisting of seven English accents of
which one is a test only accent. The accent-wise composition
of the MCV dataset can be found in Table 1.

X+P refers to systems with speed-perturbation that aug-
ments the dataset X with time-warped copies using factors

Libri-test
dev-clean test-clean dev-other test-other

Baseline 20.0 21.7 48.3 51.6
LOOKAHEAD 20.3 20.1 47.2 50.7

MCV-test
US Eng Can Ind Scot Phil HK

Baseline 61.1 63.4 46.2 85.2 60.7 61.2 70.7
LOOKAHEAD 58.7 59.9 41.5 84.4 58.0 58.3 67.7

Table 3: Rare-WER comparison of baseline vs LOOKAHEAD
on L100+P.

0.9, 1.0, 1.1 respectively. In Table 2, we indicate wherever this
augmentation is used. We test the above models both on in-
domain and out-of-domain test splits, where the latter is ob-
tained by changing the accent from the MCV corpus.

4.2. Implementation Details

We use the ESPNet toolkit [30] to implement our model and
perform all our experiments. Our base architecture is an RNN-
T model with conformers [31] as AE and LSTM [32] as LE.
The joint network adds the two encodings and applies a tanh
non-linearity. We experiment with two different models corre-
sponding to different encoder sizes.
• SMALL: This model includes 18 AE blocks with internal rep-

resentation of size 256 and four attention heads. A macaron-
style feed forward projecting to size 1024 is used within the
conformer block. The LE consists of a single 300 dimen-
sional LSTM cell. Both these encoders project their output
to a joint-space of 300 dimensions before feeding it to the
joint network. This model was used for performing experi-
ments with the L100+P and MCV datasets. We use a vocab-
ulary size of 300 and 150 sub-words for these experiments,
respectively (∼ 30M params).

• LARGE: This model has 12 AE blocks conformer-encoder of
size 512 and a macaron style feed-forward of 2048. The LE
block is a 512 unit LSTM. Both representations are projected
to a joint-space of of 512 dimensions. This model is used for
our experiments involving the L960 and L360+P datasets.
We use a vocabulary size of 500 for these experiments (∼
80M params).

We train for 100 epochs using the Noam-optimizer [33, 34] with
a Noam-learning rate of 5 and 25000 warm-up steps. For in-
ference, we use ALSD [35] with a beam size of 30. For the
purposes of LOOKAHEAD we have used 3 lookahead tokens.

4.3. Results

Our primary set of numbers can be seen in Table 2 which shows
the capability of LOOKAHEAD against baseline models trained
on various training data sizes. Using L100+P, we see statisti-
cally significant improvements (p < 0.01 using the MAPSSWE
test [36]) in WERs across both training sets for in-domain and
out-of-domain evaluation sets. The gains are reduced with using
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Reference Baseline LOOKAHEAD
shaped like commas or MAGATAMA sheep like commas or BY THE TOWN sheep like commas or MAGATINA
confession is GOOD FOR the soul the fashion is GIVEN FORWARD the soul confession is GOOD FOR the soul
for ALL WHO SIN ALL WHO SUFFER you for OLDER SIN OLD RISK you for ALL WHOOSIN OLD WHO SUFFER you
LIFE WAS not EASY by OR not EVEN LIFE OR not EASY
do ANDROIDS dream of do ENJOYS dream of do ANDREWS dream of
LA VALLIERE is quite a poetess said THE VALET is quite poetic said LAVALIER is quite a poeticus said

Table 4: Anecdotes comparing Baseline with LOOKAHEAD. Baseline hallucination errors are highlighted in blue.

Model dev clean test clean dev other test other us can eng ind scot phil hk

PER Baseline 2.52 2.73 9.90 9.81 24.46 11.74 17.34 39.33 19.55 21.35 23.96
LOOKAHEAD 2.28 2.35 8.99 8.98 23.40 10.42 15.80 38.18 17.55 19.20 22.41

WFED Baseline 8.31 8.95 31.53 31.25 77.95 39.07 52.89 118.89 63.40 64.02 73.55
LOOKAHEAD 7.57 8.00 28.84 29.13 74.47 34.20 48.23 115.30 57.12 58.94 69.04

DER Baseline 1.13 1.22 4.37 4.34 11.48 5.52 7.23 17.50 9.00 8.98 10.23
LOOKAHEAD 1.03 1.10 4.01 4.03 11.01 4.83 6.58 16.82 8.10 8.27 9.57

Table 5: Comparing acoustically-aware error metrics between Baseline and LOOKAHEAD trained using L100+P.

larger models (L360+P and L960) but still remain consistent,
especially for the out-of-domain test sets. We further focus on
rare words where the effect of LM biasing is expected to have a
greater effect. Table 3 shows WER performance of baseline vs
LOOKAHEAD on rare-words on the L100+P dataset. We de-
fine any word that occurs lower than 20 times in the dataset as a
rare-word. We see consistent improvement in rare-word recog-
nition across both in-domain as well as out-of-domain datasets.
Table 4 shows some anecdotes indicating the effectiveness of
LOOKAHEAD. Note how the baseline model hallucinates words
like TOWN, GIVEN, etc. that have no acoustic overlap with the
spoken word. LOOKAHEAD either corrects them or produces a
word that is more acoustically similar to the spoken word.

4.4. Error Analysis

Apart from WERs, we provide further analysis in Table 5 to
validate our claim that predictions from LOOKAHEAD are in-
deed acoustically more similar to the ground-truth. We use the
following three metrics:
• Phone Error Rate (PER): We use Epitran [37] to transcribe

word sequences to phone sequences in IPA and find the IPA-
based edit distance to yield PERs, which are a better measure
of acoustic discrepancy compared to WERs.

• Weighted Feature-based Edit Distance (WFED): With the
PER metric, the distance between two dissimilar phones and
two related phones are both 1.WFED is an edit distance met-
ric based on Panphon [38] that helps compute distances be-
tween IPA phones based on their articulatory features.

• Dolgopolsky Error Rate (DER): Both PER and WFED rely
on an underlying sequence of IPA phones derived from the
predicted word sequences using a fixed set of rules. These
IPA sequences are not very reliable, especially for the out-of-

Metric Ref Hyp Dist
PER ball (bOl) maul(mOl) 1

call (kOl) install (InstOl) 4
WFED ball (bOl) paul (pOl) 0.25

ball (bOl) call (kOl) 2.25
DER pit (pIt) meet (mit) 1

pit (pIt) beat (bit) 0
Table 6: Illustration of different error rate metrics

w dev-clean test-clean dev-other test-other
2 6.5 6.9 18.8 19.0
3 6.4 6.6 18.8 19.1
5 6.4 6.8 18.9 18.9

Table 7: Ablation on L100+P by varying w with LOOKAHEAD.

domain MCV speech samples with varying speech accents.
To alleviate errors arising from incorrect IPA, we use Dol-
goposky’s IPA clusters [39] to label similar-sounding IPA
phones with the same cluster ID. DER is an edit distance us-
ing these new cluster IDs that only measures large deviations
in phonetic realizations between a reference word and a pre-
dicted word and does not penalize small changes in the place
and manner of articulation of phones (like PER).

Table 6 lists illustrative examples for each of the three metrics.
E.g., WFED imposes a cost of 2.25 if “ball” is misrecognized as
“call” (which would have a PER of 1); DER imposes no cost for
“pit” being misrecognized as “beat”. Table 5 compares PER,
WFED and DER values from the baseline and LOOKAHEAD.
DER penalizes only for large acoustic digressions; we see con-
sistent improvements on DER using LOOKAHEAD with larger
improvements on the MCV test utterances. We also show abla-
tions on the window size of future tokens considered in Table 7.
We observe that using a window size of 3 yields the best results.

5. Conclusion
We propose a simple and effective scheme of acoustic LOOKA-
HEAD for RNN-T models to safeguard against producing acous-
tic hallucination. From the acoustic encoder, we extract a fixed
LOOKAHEAD of tokens and use it to improve the representa-
tion from the language encoder to generate a more acoustically
aligned output. We obtain significant reductions in WER and
various other phonetic error rates across various settings.
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