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Abstract
We propose HumanDiffusion, a diffusion model trained from
humans’ perceptual gradients to learn an acceptable range of
data for humans (i.e., human-acceptable distribution). Conven-
tional HumanGAN aims to model the human-acceptable distri-
bution wider than the real-data distribution by training a neu-
ral network-based generator with human-based discriminators.
However, HumanGAN training tends to converge in a meaning-
less distribution due to the gradient vanishing or mode collapse
and requires careful heuristics. In contrast, our HumanDiffu-
sion learns the human-acceptable distribution through Langevin
dynamics based on gradients of human perceptual evaluations.
Our training iterates a process to diffuse real data to cover a
wider human-acceptable distribution and can avoid the issues
in the HumanGAN training. The evaluation results demonstrate
that our HumanDiffusion can successfully represent the human-
acceptable distribution without any heuristics for the training.
Index Terms: diffusion models, human computation, black-
box optimization, crowdsourcing, speech perception

1. Introduction
Generative models can produce data that are indistinguishable
from real data. In particular, deep generative models [1, 2, 3, 4],
which are based on deep neural networks (DNNs), have signifi-
cantly improved the quality of generated data in media research,
including speech synthesis [5, 6, 7], natural language process-
ing [8], and image synthesis [9]. The generative models can
represent real-data distributions and produce data that follow
the learned distributions [1]. In contrast, humans may accept
data as natural even when the data are outliers of a real-data
distribution [10]. For example, in speech perception, humans
can accept synthesized or processed speech. In this paper, we
use the term human-acceptable distribution defined as the data
distribution whose data humans can accept as natural [10].

HumanGAN [10] was proposed to model a human-
acceptable distribution, whereas the basic generative adversar-
ial network (GAN) [1] can only represent a real-data distribu-
tion. GAN is a type of deep generative model and consists of a
DNN-based generator and a DNN-based discriminator. Human-
GAN replaces the discriminator of GAN with a human-based
discriminator. HumanGAN regards humans as black-box sys-
tems that output perceptual evaluation values, given the gen-
erated data. By using the estimated perceptual gradient of the
human-based discriminator, one can then train a generator to
represent a human-acceptable distribution. However, Human-
GAN often suffers from gradients vanishing and mode collapse
during training similar to the original GAN [11]. In other words,
it requires careful heuristics to prevent the learned distribution
from converging in a meaningless region, such as outside the
human-acceptable distribution or around data whose evaluation
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Figure 1: HumanDiffusion and HumanGAN. HumanDiffusion
can represent a human-acceptable distribution whereas Hu-
manGAN cannot without a heuristic solution.

value is extremely high (i.e., the mode of perceptual evaluation).
To solve these problems, we propose HumanDiffusion, a

diffusion model using perceptual gradients. For modeling a
human-acceptable distribution, we introduce diffusion mod-
els [12] to sample data that follows a real-data distribution us-
ing the gradient of the distribution. Fig. 1 shows a compari-
son of HumanDiffusion and HumanGAN, and the distributions
these models represent. On the basis of a diffusion model, our
HumanDiffusion iterates a process to diffuse real data to cover
a wider human-acceptable distribution thereby avoiding the is-
sues encountered during the HumanGAN training. HumanDif-
fusion is evaluated in terms of its phoneme perception. The ex-
perimental results show that HumanDiffusion can successfully
represent a human-acceptable distribution.

2. Related Work
Human perception is incorporated into DNNs such as rein-
forcement learning [13], and genetic algorithm [14]. Human-
GAN [10] deals with perceptual gradients to train a generator.
Because humans are better at relative evaluation than absolute
evaluation, gradient-based methods can train DNNs well.

2.1. HumanGAN
HumanGAN [10] represents the human-acceptable distribution
phuman (x), where x is data, that is wider than the real-data
distribution preal (x). A DNN-based generator of HumanGAN
is trained using a human-based discriminator (humans’ per-
ceptual evaluation) instead of the DNN-based discriminator of
GAN [1]. Let N be the number of data. The generator G (·)
transforms prior data {zn}1≦n≦N produced from a prior dis-
tribution π (z) to data {x̂n}1≦n≦N . The human-based dis-
criminator D (·) imitates humans’ perceptual evaluations. D (·)
takes x̂n as an input and outputs a posterior probability that the
input is perceptually acceptable. The objective function is

LHumanGAN =
N∑

n=1

D (G (zn)) . (1)

G (·) is trained to maximize LHumanGAN. A model parameter θ
of G (·) is iteratively updated as θ ← θ+α∂LHumanGAN/∂θ,
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where α is the learning rate, and ∂LHumanGAN/∂θ =
∂LHumanGAN/∂x · ∂x/∂θ = ∂D (x) /∂x · ∂x/∂θ.

∂x/∂θ can be estimated analytically, but ∂D (x) /∂x can-
not because the human-based discriminator D (·) is not dif-
ferentiable. HumanGAN uses the natural evolution strategy
(NES) [15] algorithm to approximate the gradient. A small
perturbation ∆x

(i)
n is randomly generated from the multivari-

ate Gaussian distribution N
(
0, σ2

NESI
)
, and it is added to the

generated data x̂n. i is the perturbation index (1 ≤ i ≤ I).
σNES and I are the standard deviation and the identity ma-
trix, respectively. Next, a human observes two perturbed data
{x̂n + ∆x

(i)
n , x̂n − ∆x

(i)
n } and evaluates their difference in

the posterior probability of naturalness:

∆D
(
x̂(i)

n

)
≡ D

(
x̂n +∆x(i)

n

)
−D

(
x̂n −∆x(i)

n

)
. (2)

∆D
(
x̂

(i)
n

)
ranges from −1 to 1. For instance, a human

will answer ∆D
(
x̂

(i)
n

)
= 1 when the human perceives that

x̂n +∆x
(i)
n is substantially more acceptable than x̂n −∆x

(i)
n .

∂D (x̂n) /∂x is approximated as [15]

∂D (x̂n)

∂x
=

1

2σNESI

I∑

i=1

∆D
(
x̂(i)

n

)
·∆x(i)

n . (3)

However, HumanGAN requires various heuristics during
training, such as initialization and training stops. First, Human-
GAN should roughly know the shapes of the human-acceptable
distribution in advance to make the training easier. Data that de-
viate significantly from the human-acceptable distribution can-
not be distinguished by humans, resulting in an inaccurate es-
timation of the gradient in Eq. (3). Moreover, the genera-
tor training should be stopped before converging to represent
the human-acceptable distribution because the training causes
mode collapse due to the training based on the maximization
of Lhuman. Concretely, if the generator finds one region in the
data space where humans evaluate them as highly acceptable
during the training, the learned distribution converged in a lim-
ited range of the whole human-acceptable distribution.

2.2. Diffusion models
The diffusion models [12] use the gradient of the data distri-
bution to train a model that represents the real-data distribution
preal (x). The score of the real-data distribution preal (x) is de-
fined as ∂ log preal(x)

∂x
. The score network S (·) is parameterized

by θ and trained to approximate the score.
Even if the true preal (x) is not observable, as long as

the score ∂ log preal(x)
∂x

is observable, an iterative update with
Langevin dynamics [16] can be applied as follows. Langevin
dynamics is a kind of Markov chain Monte Carlo (MCMC)
method using the gradients of the data distributions. First, an
input data x0 is sampled from a prior distribution π (z). Then,
the data at (t + 1)th step (t = 0, 1, . . . , T − 1) is calculated
based on the Langevin dynamics using the score:

xt+1 = xt +
ϵ2

2

∂ log preal (xt)

∂x
+ ϵr, (4)

where ϵ > 0 and r are a fixed step size and random vector from
the isotropic Gaussian N (0, I), respectively. Finally, the dis-
tribution of the output data at the final step T , xT , will equal
preal (x) when ϵ → 0 and T → ∞. Because sampling from
Eq. (4) only requires the score ∂ log preal(x)

∂x
, the score network

S (x) ≈ ∂ log preal(x)
∂x

can be trained, and it can then approx-
imately produce samples with Langevin dynamics. Given real
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Figure 2: Tasks for crowdworkers to estimate the score. Periph-
ery data are sampled from real data. A human observes two
perturbed data and evaluates their perceptual difference in nat-
uralness acceptability. The score is estimated using evaluation
and perturbation.
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Figure 3: Training score network and inference in HumanDiffu-
sion. The score network outputs gradients and evaluation val-
ues to calculate scores. Samples are produced with Langevin
dynamics.

data {xn}1≦n≦N , the score ∂ log preal(x)
∂x

is predicted by using
S (·).

The score network S (x;θ) for estimating ∂ log preal(x)
∂x

is
trained by score matching without training a model to estimate
preal (x). The objective function for training S (·) is

LDiffusion =
N∑

n=1

∣∣∣∣S (xn;θ)− ∂ log preal (xn)

∂x

∣∣∣∣
2

. (5)

As explained above, the diffusion model can generate data
that follow a real-data distribution by using scores of the real-
data distribution. If we can observe scores of the human-
acceptable distribution instead of the real-data distribution, and
if the score network can learn them, we expect to be able to
generate data according to the human-acceptable distribution.

3. HumanDiffusion
3.1. Components of HumanDiffusion
Fig. 2 shows the process of HumanDiffusion. HumanDiffu-
sion uses the gradient of perceptual evaluation to train a model
representing the human-acceptable distribution phuman (x) =
1
Z
D (x), where Z =

∫
D (x) dx is the normalization coeffi-

cient. The score is defined as ∂ logD(x)
∂x

. We process periphery
data sampled from real data xn to estimate the score around the
real-data distribution. Let M be the number of periphery data
per real data. We sample periphery data {x̂n,m}1≦n≦N,1≦n≦M

from N(xn, σ
2
perI), where σper is the standard deviation. The

perceptual evaluation function D (·) is driven by humans and
takes data x as the input and outputs the perceptual evaluation
value of the naturalness of the data in the range of [0, 1]. If the
data is natural, the evaluation value is 1, and if the data is un-
natural, the evaluation value is 0. The score network S (·) is
trained to approximate the score of D (x). The objective func-
tion is defined as the minimization of

LHumanDiff =
N∑

n=1

M∑

m=1

∣∣∣∣S (xn,m;θ)− ∂ logD (x̂n,m)

∂x

∣∣∣∣
2

.

(6)

3.2. Estimating score of perceptual evaluation
Similar to the HumanGAN, the score ∂ logD(x)

∂x
cannot be es-

timated because the evaluation functions are based on the per-
ceptual evaluation. We use the NES algorithm to estimate the
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score. The NES algorithm uses evaluation values of two per-
turbed data. With the index i, a human observes two perturbed
data x̂n,m,+∆x

(i)
n,m, x̂n,m − ∆x

(i)
n,m, where ∆xn,m is sam-

pled from N(0, σ2
NESI) in the same way as Eq. (3). In Human-

GAN, humans responded only to the difference between the two
samples (Eq. (2)), but in HumanDiffusion, humans responded
to the absolute value of naturalness for each of these two sam-
ples.

To estimate the score using the NES algorithm in the same
manner as using HumanGAN, we adopt the chain rule to the
score: ∂ logD(x)

∂x
= 1

D(x)
∂D(x)
∂x

. The score is obtained by esti-

mating D (x) and ∂D(x)
∂x

. We remodel the score network S (·)
to output SD (·) ≈ D (x) and S∇D (·) ≈ ∂D(x̂n,m)

∂x
instead of

∂ logD(x̂n,m)
∂x

, as shown in Fig. 3. If the dimension of the data
is d, this network outputs values in d+ 1 dimensions. The loss
function of the score network (Eq. (6)) is redefined as

Lunconditional
HumanDiff =

N∑

n=1

M∑

m=1

(
|SD (x̂n,m)−D (x̂n,m)|2

+

∣∣∣∣S∇D (x̂n,m)− ∂ logD (x̂n,m)

∂x

∣∣∣∣
2)
. (7)

∂D(x)
∂x

can be approximated in the same manner as in Human-
GAN:

∂D (x̂n,m)

∂x
=

1

2σNESI

I∑

i=1

{
D

(
x̂n,m +∆x(i)

n,m

)

−D
(
x̂n,m −∆x(i)

n,m

)}
·∆x(i)

n,m. (8)

Next is the estimation of D (x), where
D(i) (x̂n,m) at the index i is given by D(i)(x̂n,m) =(
D

(
x̂n,m +∆x

(i)
n,m

)
+D

(
x̂n,m −∆x

(i)
n,m

))
/2, and

D (x̂n,m) is estimated from it. The most intuitive method is to

estimate the mean D (x̂n,m) = 1
I

I∑
i=1

D(i) (x̂n,m). However,

since D(i) (x̂n,m) is a defined range of values, the distribution
of D(i) (xn,m) is not symmetric near its lower bound (0,
i.e., the perceived quality of the data is extremely poor) or,
its upper bound (1, the perceived quality is extremely good).
Therefore, the mean is not a suitable representative value of the
distribution. Therefore, in this paper, we use kernel distribution
estimation given P

(
D(i) (x̂n,m)

)
and consider its mode as

D (x̂n,m). Preliminary experiments were conducted using
both the mean and mode methods, and the mean did not show
the sampling convergence.

From the above formulation, the score network is a network
that outputs both D (x) and ∂D(x)

∂x
, as shown in Fig. 3. If

the dimension of the data is d, this network outputs values in
d + 1 dimensions. The score network is trained using Eq. (6)
by computing ∂ logD(x)

∂x
from the output D (x) and ∂D(x)

∂x
.

3.2.1. Compensating for inaccurate gradient

If two perturbated data of extremely poor quality (e.g., sounds
that do not sound like a speech) are observed and evaluated by
a human, the score is very inaccurate1. Therefore, we assume
that the naturalness of the real data is not poor at all, and we

1Intuitively, it is difficult to evaluate the naturalness of two ex-
tremely poor quality data. Therefore, the score of periphery data xn,m

of extremely poor quality cannot be estimated from the gradient alone.

apply a regularization that brings the gradient ∂D(x)
∂x

closer to
that of the real data used to sample the periphery data as

∂D (x̂n,m)

∂x
← ∂D (x̂n,m)

∂x
+ b (x̂n,m − xn) , (9)

where b is a hyperparameter. This method is based on an ex-
isting diffusion model that robustly estimates scores in the ab-
sence of any data [12]. Preliminary experiments have confirmed
that without this regularization, the scores for extremely poor-
quality data are very close to zero, and the sampling described
below does not converge.

3.3. Sampling with Langevin dynamics

The score is computed using Eqs. (8) and (9) and modeled them
using Eq. (6). Langevin dynamics is used to sample the data
according to the human-acceptable distribution phuman (x).

xt+1 = xt +
ϵ2

2
S (xt) + ϵr. (10)

The initial distribution that x0 follows is a real-data distribution
(e.g., data generated by a trained GAN). The training iteration
is continued until convergence.

4. Experiments and Results
4.1. Experimental setup
Data space and speech analysis-synthesis. Phoneme per-
ception experiments were conducted as described in a previ-
ous report on HumanGAN using basically the same experi-
mental setup [10]. We basically followed the experimental
setup of the HumanGAN paper [10], specifically, we used the
phoneme (Japanese /a/), the JVPD corpus [17], preprocessing,
the WORLD vocoder [18, 19], and speech features including
log spectral envelopes. We applied principal component anal-
ysis (PCA) to the log spectral envelopes and used the first
and second principal components. The two-dimensional prin-
cipal components were normalized to have zero-mean and unit-
variance. The speech synthesis step also followed the previous
report on HumanGAN paper [10]. First, the first and second
principal components were generated by the neural network and
de-normalized. Then, a 1-second speech sample was synthe-
sized using the remaining speech features, i.e., F0, and aperi-
odicities. The evaluation was performed by using the Lancers
crowdsourcing platform [20].

Perceptual test. We carried out perceptual evaluations.
Two speech waveforms generated from x̂n,m + ∆x

(i)
n,m,

x̂n,m − ∆x
(i)
n,m were presented to a listener, and the lis-

tener provided the naturalness values D
(
x̂n,m +∆x

(i)
n,m

)
and

D
(
x̂n,m −∆x

(i)
n,m

)
using slide bars. The slide bars range

from 0 to 1. Listeners selected 1 if the speech was natural and
0 when the speech was unnatural. The total number of listeners
was 150.

Score network and HumanDiffusion sampling. The
score network was a feed-forward neural network. It inputs
two-dimensional data x and outputs one-dimensional D (x)

and two-dimensional ∂D(x)
∂x

. The network consisted of a two-
unit input layer, 3 × 128-unit softplus [21] hidden layers, and
three-unit sigmoid (for D (x)) and linear (for ∂D(x)

∂x
) output

layers. We used the Adam [22] optimizer with a learning rate
of α = 0.001 for the training. The number of real data N , the
number of periphery data per real datum M , the number of per-
turbations I , the number of training iterations, and the standard
deviation of NES σNES, the standard deviation σper were set to
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Figure 4: Observed gradients, gradients with regularization,
and modeled gradient by score network.

100, 3, 20, 10000, 1.0 and 10, respectively. For the Langevin
dynamics sampling, the number of data sampled from real-data
distribution N (0, 1), step size ϵ, the number of iterations were
set to 200, 0.0001, 100000. We confirmed that the distribution
converged after 10, 000 iterations of the sampling.

HumanGAN. For comparison, we also trained Human-
GAN. The generator was a feed-forward neural network. The
model consisted of a two-unit input layer, 3× 128-unit softplus
hidden layers, and a two-unit linear output layer. Although the
original training of HumanGAN requires listening experiments
to determine the perceptual gradient for each iteration, in this
study, we used the output of the score network to reduce the
cost of experiments. Specifically, the output ∂D(x)

∂x
of the score

network was used for training. We used the Adam optimizer
with a learning rate of α = 0.01 for the training. The number
of training iterations was set to 10000. The initial parameters
were set to cover a neighborhood of the perceptual distribution
as described in the report on HumanGAN [10].

4.2. Qualitative evaluation of score network training
First, we qualitatively confirm the observed scores and the score
network training. The left panel in Fig. 4 is the estimated gradi-

ent for each
∂D(x̂n,m)

∂x
. As described in Section 3, the real data

distribution follows a mean of 0 and a variance of 1. This figure
shows that a gradient occurs over a wider range than that of the
real data distribution. In other words, as shown in the Human-
GAN paper, the perceptual distribution exists over a wider range
than the real data distribution. On the other hand, when the
data are outliers far from the real data distribution (e.g., when
the x-axis value exceeds ±5), the gradient is almost zero. This
indicates that the perceptual gradient has vanished owing to ex-
tremely poor sound quality. Regularization compensates for this
gradient vanishing, and the result is shown in the middle panel
of Fig. 4. This regularization produces a gradient toward the
real data distribution even for data that are outliers. The result
of training this gradient in the score network is shown on the
right panel of the figure. Finally, a gradient toward the center is
learned.

4.3. Quantitative/qualitative evaluation of sampling
Next, we compare the data generated by HumanGAN and Hu-
manDiffusion to show that the HumanDiffusion sampling is rea-
sonable. Figs. 5 a) and b) show the distributions of data gen-
erated by HumanGAN and HumanDiffusion, respectively. The
gradients are also shown for reference.

HumanGAN learns only to move data in the gradient di-
rection, which causes mode collapse, as shown on the right
panel of Fig. 5 a) unless a heuristic iteration limit is set. In
contrast, HumanDiffusion includes a stochastic movement term
based on MCMC and thus captures a wider range than the real
data distribution, as shown on the right panel of Fig. 5 b).
The results demonstrate that HumanDiffusion can learn a wider
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Figure 5: Data generated by a) HumanGAN and b) HumanDif-
fusion.
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Figure 6: Violin plots of posterior acceptability. The white point
indicates the average.

human-acceptable distribution without introducing heuristics
used in HumanGAN. The variance of the real data distribution
is [1.0, 1.0] (unit variance), whereas the variance of the data
distribution obtained by HumanDiffusion is [9.2, 8.9], indicat-
ing that HumanDiffusion represents a wider distribution than
the real data distribution.

4.4. Evaluation using real and generated data
Finally, we quantitatively verified whether HumanDiffusion can
generate samples from a human-acceptable distribution wider
than a real-data distribution. We prepared two data sets: from
the real-data and the HumanDiffusion distributions. The pos-
terior probabilities of these data sets were evaluated using the
MUSHRA test. The posterior probability ranged within [0, 1]
and corresponds to D (x). The numbers of the data are 200
respectively. The total number of listeners was 40. A listener
evaluated 20 samples.

Fig. 6 shows the violin plots of the posterior probability.
The average of real-data distribution data is 73 and the average
of generated data is 69. Therefore, we consider that the gener-
ated data are sufficiently natural, although the variation of the
data distribution is much larger than that of the real-data distri-
bution. It is clear that HumanDiffusion can represent a human-
acceptable distribution.

5. Conclusions
In this paper, we presented HumanDiffusion, which can repre-
sent a human-acceptable (humans’ perceptually recognizable)
distribution. We evaluated the use of HumanDiffusion in mod-
eling phoneme perception, and we qualitatively and quanti-
tatively demonstrated that HumanDiffusion can represent a
human-acceptable distribution. As our future work, we will ex-
amine the scalability of the HumanDiffusion in terms of feature
dimensionality.
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