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Abstract
We apply topological data analysis (TDA) to speech classifica-
tion problems and to the introspection of a pretrained speech
model, HuBERT. To this end, we introduce a number of topo-
logical and algebraic features derived from Transformer atten-
tion maps and embeddings. We show that a simple linear classi-
fier built on top of such features outperforms a fine-tuned clas-
sification head. We achieve an improvement of about 9% ac-
curacy and 5% ERR on two common datasets; on CREMA-D,
the proposed feature set reaches a new state of the art perfor-
mance with accuracy 80.155. We also show that topological
features are able to reveal functional roles of speech Trans-
former heads; e.g., we find the heads capable to distinguish
between pairs of sample sources (natural/synthetic) or voices
without any downstream fine-tuning. Our results demonstrate
that TDA is a promising new approach for speech analysis, es-
pecially for tasks that require structural prediction.
Index Terms: TDA, HuBERT, interpretability, emotion recog-
nition

1. Introduction
The paradigm of learning universal large-scale Transformer-
based models has been recently transferred to speech from nat-
ural language processing [1, 2, 3]. Due to the high complexity
of speech data, the preferred way of downstream task adapta-
tion for such models is to keep pretrained weights frozen and
fine-tune small task-specific heads [4], so it is important to use
the model’s hidden states in the most efficient way. A common
approach is to use the outputs of the last layer of the model,
combining them via various pooling methods, although it has
been shown that for some tasks, e.g. phoneme prediction in
HuBERT or the analogy task in BERT, embeddings from lower
and middle layers are more useful [5]. Topological data analy-
sis (TDA) is a recently proposed way to obtain more efficient
data representations from frozen Transformer weights [6, 7].
TDA features prove to be better suited for many downstream
tasks, including artificial text detection and linguistic accept-
ability judgement. In particular, for ungrammatical sentence
detection conventional sentence embeddings yield classification
quality no better than random, while TDA has led to meaningful
results. Inspired by these results, in this work we apply TDA to
the HuBERT model to construct more powerful speech repre-
sentations.

TDA has already been applied to signals of various nature.
Previous attempts for speech used topological properties of the
audio signal: persistent entropy for noise classification [8] and
emotion recognition [9], detection of a periodic signal in noisy
data [10] etc. However, TDA for Transformer-based models has
so far been limited to natural language processing (NLP): TDA

for attention maps for artificial text detection [6] and linguistic
acceptability [7], TDA for word embeddings for dialogue term
extraction [11] and constructing story trees [12]. The evolu-
tion of inner representations in neural networks has been stud-
ied with persistent Betti numbers [13] and recently introduced
representation topology divergence (RTD) [14], which we ap-
ply in this work to intermediate embeddings and attention maps
of a speech Transformer.

In this work we also apply TDA to interpreting pretrained
Transformer models. It is well known in NLP that different
heads are sensitive to different phenomena [5], and we demon-
strate the same effect for speech Transformers, finding heads
that are best for solving specific downstream tasks: separat-
ing a given pair of emotions, a given pair of speakers, detect-
ing speech generated by a specific TTS model, or representing
spectral features of sound samples (bit rate, LPCC etc.). Be-
low, Section 2 introduces TDA, Section 3 shows our evaluation
study, Section 4 applies TDA to interpreting attention maps, and
Section 5 concludes the paper.

2. Methods
Below, we first introduce topological data analysis for weighted
graphs and then define the features we extract from HuBERT.
Homologies of graphs and manifolds. Topology is the study
of properties of manifolds in space other than their size, i.e.,
loosely speaking, topology considers an object as if it were
made of an infinitely stretchable material that can stretch and
compress as long as there are no cuts or gluings. Topological
invariants are properties of manifolds that do not change un-
der topological transformations. Homology groups are among
the most important invariants, calculated separately for different
dimensions. The homology group of dimension i consists of i-
dimensional closed objects on the manifold that cannot be con-
verted into each other by a topological transformation; e.g., the
0-th homology group consists of 0-dimensional objects (points)
and equals in size to the number of connected components. In
this work, we are not going beyond the 0-th dimension, but our
methods can easily be extended to the H1 group, which consists
of the closed paths on the manifold, or cycles in a graph. For
higher dimensions, the computations may become prohibitive.
Persistent homologies for weighted graphs and point clouds.
We would like to apply TDA to sets of vectors in Rd (point
cloud). This set can be viewed as a complete graph G with
edges weighted by a distance-like metric between vectors. To
estimate the topological properties of this graph, it looks natu-
ral to remove weak connections by thresholding, leaving only
edges with weights lower than a given ϵ. However, it is not
clear which threshold to choose. TDA can track the changes of
topology across varying thresholds via persistent homologies.
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Figure 1: Constructing an H0 barcode for a dataset with a hier-
archical structure: (a) first, small clusters are connected; (b) as
the threshold grows, larger blue and yellow clusters are joined;
(c) finally, all dots are joined into a single component. Each bar
corresponds to an edge in the minimal spanning tree.

Fig. 1 illustrates the persistence of 0-dimensional homologies
H0 (connected components) for a set of points. For ϵ below
the minimal distance between vertices, we obtain a graph with
no edges; as ϵ increases, new edges are added, ending in the
complete graph. During this process, gradual changes of graph
topology can be expressed in terms of the “birth” and “death”
of basic features. We begin with |V | connected components (all
of them are “born”), and as ϵ increases, pairs of them are joined
together (one component “dies”). “Birth” and “death” moments
can be represented with a diagram called the barcode [15, 16],
where the horizontal axis is a sequence of thresholds ϵ, and each
horizontal bar corresponds to a single feature.

An important property of the H0 barcode is that its bars
correspond to the edges of the minimal spanning tree (MST) of
the graph. Indeed, our process of adding edges as the threshold
grows coincides with the classical Prim algorithm that finds the
MST in a weighted graph; the length of the bar which is “dying”
on every step equals the length of the corresponding MST edge.
We denote by Hm

0 the average length of bars in the H0 barcode.
The H0 barcode can capture information about the hierar-

chical structure of the dataset, as illustrated in Fig. 1. As we
show in Section 4, our methods work well with the hierarchi-
cal information of speech signals, distinguishing the levels of
frames, phonemes, words, and pauses.

Representation topology divergence (RTD) measures the
topological dissimilarity between two data representations, for-
malized as two weighted graphs Ga and Gb with a common set
of vertices. If RTD equals zero then the H0 barcodes of the two
graphs coincide. And vice versa, if the barcodes coincide and
the resulting clusters of vertices are the same on all levels then
RTD is zero. For details and the formal definition, see [14, 17].
Features. We use three groups of features: algebraic features
of attention matrices, topological features of attention matrices,
and topological features of embeddings; for comparison, we
also pool embeddings from all layers. We consider HuBERT-
base model [1] that consists of 12 layers with 12 attention heads
each, with embedding dimension 768.

Algebraic features include the sum of the upper triangular
part of the n × n attention matrix (normalized by n2), which
is used as a measure of asymmetry, and mean values of its 3
longest diagonals. This yields 4 features per attention map, 576
for the entire HuBERT model.

Topological features of attention matrices include the Hm
0

feature for two graphs derived from each attention matrix Aattn.

Hm,sym
0 is defined as Hm

0 for the graph with adjacency matrix

A′ = 1−max
(
Aattn, A

⊤
attn

)
, (1)

that is, the symmetrization of Aattn (cf. [6]). Hm,pc
0 is defined

as Hm
0 for the rows of Aattn considered as a point cloud with

L1-distance. The intuition behind this choice of distance is that
these points always lie on the L1 sphere because the rows of
attention matrix are normalized by softmax. Here we have two
features per attention map, 288 in total.

Topological features of embeddings. Considering the i-th
layer’s embeddings X(i) as a point cloud with the L2-distance,
we obtain 3 features for each layer: Hm

0 (X(i)), RTD between
X(i) and the last layer’s embeddings X(L), and RTD between
X(i) and initial embeddings X(0) (36 features in total). Be-
sides, we add mean mel-frequency coefficients (MFCC); since
we use 13 MFCCs, it gives 13 more features. Finally, we add
two features: Hm

0 of the MFCC features and of the initial em-
beddings. In total, we have 51 features for the entire model.

Embeddings from all layers. An alternative approach, in-
spired by [18], is to use pooled embeddings from each layer
of the Transformer, not just the last. We explored two pooling
strategies: averaging over the timescale (common for speech
Transformers) and taking only the first embedding as suggested
in [18]. This yields 9216 features in each case.

3. Evaluation
Datasets. We evaluate our method on tasks of emotion recogn-
tion, antispoofing, and speaker verification. Our features are
not applicable directly to ASR tasks because they characterize a
speech sample as a whole; however, we additionally performed
an evaluation on the word classification task to check that lin-
guistic information can be captured. We have used standard
datasets for these tasks. IEMOCAP, introduced in [19], con-
tains ≈ 12 hours of audiovisual data, including video, speech,
motion capture of faces, and text transcriptions; we use only
speech samples from the “Anger”, “Sadness”, “Happiness”, and
“Neutral” classes (4490 samples), with 5-fold cross-validation,
similar to [20, 21]. CREMA-D [22] has 7442 clips from 91 ac-
tors who spoke 12 different sentences in one of six basic emo-
tions (anger, disgust, fear, happy, neutral, and sad); we perform
multi-class classification with 6 classes and evaluate by aver-
aging five splits with 70/15/15% train/development/evaluation
subsets. ASVSpoof [23] was presented for the 3rd Automatic
Speaker Verification Spoofing and Countermeasures Challenge;
we used the standard split with 25380 training, 24844 devel-
opment, and 71237 evaluation samples and performed clas-
sification into generated and bonafide labels, a standard task
on ASVSpoof [24]. VoxCeleb1 [25] contains over 100K ut-
terances by 1251 celebrities extracted from YouTube videos;
we performed binary classification between pairs of utterances
from the same or different speakers, with 40000 pairs in the
training set, 8000 in development, and 37720 in the test set; in
this dataset, we clip each utterance to the first 5 seconds for all
methods, due to the amount of data. FSDD1 (Free Spoken Digit
Dataset) is a simple dataset consisting of 3000 short recordings
of spoken digits. Each recording was obtained from one of 6
speakers, and there are 50 recordings of each digit per speaker.
The test set consists of 10% of the recordings that include all
speakers and digits. We performed multi-class classification on
this task.

1https://doi.org/10.5281/zenodo.1342401
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Table 1: Experimental results; ⋆ — from SUPERB [4].

Model IEMO
CAP

CREMA-
D

ASV
Spoof

Vox
Celeb1

FSDD

Acc ↑ Acc ↑ EER ↓ EER ↓ Acc ↑
HuBERT
(baseline)

64.92⋆ 71.047
±0.566

6.649 7.45 99.3
±1.3

All layer
embs, 1st

65.612
±1.050

71.320
±0.479

2.706 46.240 96.0
±0.7

All layer
embs, mean

69.355
±1.801

76.260
±1.148

1.519 8.46 97.7
±0.5

Attention
features

69.666
±1.174

79.200
±1.240

2.138 30.326 98.7
±0.8

Attn. &
non-attn. feat.

69.955
±0.972

80.155
±0.680

1.946 26.443 99.6
±0.4

Models. We utilize the HuBERT Base model [1] pretrained
for automatic speech recognition on 960 hours of audio from
the Librespeech corpus [26]. We use HuBERT as a pretrained
frozen instance, without fine-tuning or any other adjustment of
the weights. We use a linear layer trained over the pooled out-
put of the Transformer as the baseline, which is consistent with
the SUPERB leaderboard [4]; we used the results for IEMO-
CAP and VoxCeleb1 published there and trained the baselines
ourselves for the other datasets.

As our TDA-based approach, we train a logistic regression
model with L1-regularization over the set of features computed
from HuBERT attention maps and/or embeddings. For auto-
matic speaker verification (checking if two utterances are made
by the same person) we compute the absolute value of elemen-
twise differences between features of both utterances.
Experimental results. Table 1 shows experimental results on
all five datasets; we report accuracy (Acc, in %) and equal er-
ror rate (EER, in %) for models trained on four different sets of
features (see Section 2): (1) Attention features is a combination
of algebraic and topological features calculated from attention
maps; (2) Attn. & non-attn. feat. denotes a combination of alge-
braic and topological features of attention maps and topological
features of embeddings; this combines all our TDA features for
this task; (3) All layer embs, 1st is the concatenation of first
embeddings from all HuBERT layers; (4) All layer embs, mean
is the concatenation of all HuBERT embeddings with timescale
averaging. Below we show our conclusions from Table 1.

First, on all datasets averaging the embeddings is a much
better strategy than taking just the first. One reason might be
that in HuBERT data representation there is no a fictional first
token that represents the sample as a whole, similar to [CLS] in
NLP Transformers. Second, adding non-attention features im-
proves performance compared to just attention-based features,
as expected since they contain more information, although for
IEMOCAP the improvement is quite marginal. Third, topo-
logical features give better results than embeddings from all
layers on multi-class emotion recognition datasets (IEMOCAP,
CREMA-D). On emotion recognition datasets (IEMOCAP and
CREMA-D) we achieve major improvements over the baseline
(conventional usage of HuBERT). Our results on VoxCeleb1 are
very close to the baseline (the second best values in every col-
umn of Table 1 are underlined), and on FSDD our method per-
forms slightly better than the baseline and very close to perfect
accuracy. For CREMA-D, we achieve a new state of the art re-
sult, improving the previous SOTA of 70.47% [27] by over 9%.

For emotion recognition tasks, topological features pro-

Figure 2: Hm,sym
0 for the best HuBERT heads for two tasks:

(a-c) individual model separation between human (blue) and
synthetic (red) speech; (d-e) speaker separation; LA 0069,
LA 0072, LA 0078 – female speakers, LA 0070, LA 0076,
LA 0071 – male speakers.

vide clear benefits over all considered baselines. For generated
speech detection and speaker verification, attention features do
not help with task solving in general, but in the next section
we show that features computed for individual heads perform
surprisingly well for restricted subtasks in the zero-shot setting.

4. TDA for interpreting attention maps
Restricted tasks. Inspired by recent works on attention inter-
pretability in natural language processing [5], we analyze the
roles of individual attention heads in HuBERT. Since their “ar-
eas of expertise” are much more narrow than general problems
considered above, we use two restricted tasks: separation of in-
dividual models (one synthetic model vs real speech) and sepa-
ration (binary classification) of two speakers.

For individual model separation, we collected all samples
produced by a given synthetic model and an equal amount of
bonafide samples (real speech) randomly selected from train
and validation sets. For each HuBERT attention head, we cal-
culate the distributions of the Hm,sym

0 feature for synthetic and
real samples and rank the heads by separation quality defined as

SQ1,2 =
|m1 −m2|
max(σ1, σ2)

, (2)

where mi are the means and σi are the variances of classes.
Fig. 2 shows sample separations; it turns out that for every voice
model there are several heads that separate them well (SQ > 1)
and for most models there are heads that separate them very
well (SQ > 3). The best heads are different and are usually sit-
uated in the middle-to-top layers of HuBERT. The worst results
were obtained on the A19 model that was specially fine-tuned
on evaluation data (best SQ = 1.45). Separation quality of the
threshold classifier for the best head varies from EER 0.03%
for the A14 model (SQ = 3.5) to EER 36.5% for the A19
model. For individual speaker separation, a similar approach
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Figure 3: Distribution of heads with high correlation (Pearson
correlation coefficient ≥ 0.5) of Hm,pc

0 and standard acoustic
features: blue, MFCC; green, PLP.

Figure 4: Sample barcode and MST on different levels for head
(2, 4) for one speech sample; sample text: “I know it”, sam-
ple phones: “sil AY1 N OW1 IH1 T sp”. Nodes and bars are
colored with respect to the phonemes they represent. Black
dashed lines show barcode levels corresponding to the trees on
the right. Separators inside the bars show levels where nodes
from the same phoneme are joined to the bar’s component.

on ASVSpoof also shows that every pair of speakers has heads
with good separation (SQ > 1), but this time there are no heads
with SQ > 3. Fig. 2(d-e) shows sample separations. On the
other hand, more general tasks are not handled well by individ-
ual heads; e.g. the best achieved separation of male vs female
speakers has SQ = 0.72.

For emotion pair separation our approach yields results that
are quite similar with those for model and speaker separation.
They, and additional results for other experiments from this sec-
tion, are presented at the website2.
Attention maps and classical acoustic features. HuBERT

2topohubert.github.io/speech-topology-webpages

model works with raw signals, but its attention mechanisms
can extract a lot of varied information, so we searched for po-
tential similarities between TDA features and common acous-
tic features extracted to process speech: mel-frequency cepstral
coefficients (MFCC) and perceptual linear predictive features
(PLP). Following [28], we extract the acoustic features for sam-
ples from the ASVSpoof dataset (real human speech only) and
compute Pearson correlations between them and attention fea-
tures. Fig. 3 shows the results for Hm,pc

0 ; heads that have
a strong correlation between Hm,pc

0 and mean MFCC and/or
mean PLP are marked in Fig. 3. Note that PLP features are de-
tected mainly on lower layers, and MFCC on the middle and
top layers of the model.
Interpretation of 0-dimensional barcodes. Fig. 4 illustrates
how the H0 barcode can capture hierarchical information in
a speech sample. We take a sample from LibriSpeech with
phoneme alignment [29] and consider the graph built from the
adjacency matrix by formula (1).

Each bar is colored with respect to the proportion of each
phoneme in the corresponding connected component. When
edges are absent, each bar corresponds to the component of one
vertex, so the entire component belongs to a single phoneme.
For larger thresholds, mixed components will appear, which
would change the bar’s color. However, on the left of Fig. 4 we
can see that all bars do not change color until very high thresh-
old values. Moreover, there is a clear difference in length be-
tween bars corresponding to phonemes (green, yellow, orange)
and bars in non-speech parts labeled as sp (pause, red) or sil (si-
lence, blue). In general, the barcode reflects the hierarchy: there
is a large number of short single-phoneme bars, a few longer
bars connect phonemes to each other, and finally the longest
bars in Fig. 4 correspond to non-speech parts of the sample.

These structure levels can be observed in the right-hand part
of Fig. 4. The top right graph shows each phoneme in a separate
connected component, while the bottom right graph shows the
whole phrase covered by the tree, but silence and pause nodes
stay apart. It means that as the threshold increases, the vertices
first form phoneme clusters, then connect the whole sentence,
and only after that silence is attached. This tendency can be
observed in many examples on specific heads.

5. Conclusion
In this work, we have applied topological data analysis to solv-
ing downstream tasks based on a pretrained HuBERT model
and analysis and interpretation of individual attention heads.
We have shown that TDA yields compact feature sets that
give excellent results for tasks such as emotion recognition and
speaker classification, including a new state of the art result on
CREMA-D. Besides, we have shown how TDA can help inter-
pret individual heads in a Transformer-based architecture, and
shown that the structure defined by TDA features corresponds
well to the semantic structure of a speech sample. We believe
that topological analysis is an important and currently under-
explored venue of research for large machine learning models
such as Transformers, and propose TDA as a potentially fruitful
direction of study.
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