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Abstract
Monitoring runner exertion in real-time can provide unique in-
sights that help improve training and reduce injuries. Most ex-
isting methods use heart rate (HR) as a physiological proxy of
it, but this does not always correspond to self-perceived exer-
tion. This is an additional factor in determining overall strain
and is typically evaluated with the Borg rating of perceived ex-
ertion (RPE) scale. In recent years, speech has been one of
the many modalities used to monitor exertion; however, mostly
used to predict physiological measures using speech collected
after a physical task. In this work, we contrast the manifesta-
tion of subjective vs objective exertion on speech signals ob-
tained while running in real-life environments. We identify and
interpret a set of prosodic and spectral features related to both
markers, and proceed to train deep learning models that directly
predict RPE and HR from speech, obtaining an average Pearson
correlation of .341 and .418, respectively.
Index Terms: Perceived Exertion, Heart Rate, Speech Analy-
sis, Computational Paralinguistics, Machine Learning

1. Introduction
Computer audition has become a cornerstone of recent advances
in digital health, due to its noninvasive nature and ubiquitous
presence in everyday devices such as smartphones and wear-
ables, leading to a steady rise in associated applications [1].
Recently, it has been applied to the analysis and prediction of
objective and subjective indicators of exertion in running ap-
plications [2–8]. Exertion during running is a key indicator
of potential overuse injuries that plague up to 79% of runners
on a yearly basis [9]. Promptly detecting the onset of exertion
can help inform training and regulate training regimens to de-
crease the risk of injury [10], while additionally improving per-
formance for experienced athletes and leading to the retainment
of a new habit for amateurs [11]. Critically, most prior works fo-
cus on objective measures of exertion, such as heart rate or VO2,
both of which are known to impact the production of speech [2,
12, 13]. On the other hand, subjective, self-reported measures
are relatively under-researched [14]. However, subjective ex-
ertion markers can be more informative with regards to deter-
mining dangerous strain and increasing overall activity enjoy-
ment, as they account for signals from the peripheral muscles
and joints, as well as the cardiovascular, respiratory, and cen-
tral nervous systems [15], thus acting complementarily to heart
rate (HR). The main focus of this work is to mitigate this gap
and investigate the impact of subjective exertion on speech, and
specifically whether speech signals can be used to predict these
additional aspects of exertion.

The use of speech as a measure of physical activity has a
long history, starting from the simple, yet informative, ‘Talk

Test’ [16]. This has, in turn, led to the utilisation of speech
as a biomarker of physical intensity [2–8]. These prior works
have mostly investigated the impact of physical intensity af-
ter exercise, with subjects typically undergoing a fixed exer-
cise protocol preceded and followed by a data recording – often
of read speech. Analysing speech during exercise is relatively
under-researched [3, 7], but with a considerably larger upside
for providing the real-time feedback crucial for regulating train-
ing. The elicitation protocol in this case requires participants to
talk while running, a setup we also follow in our work.

The basic premise is that out-of-breath speech exhibits
changes to breathing patterns, namely a heavier inhalation and
exhalation of air, which in turn impacts speech production [17].
A substantial part of this prior work has been dedicated to eval-
uating the impact of physical exertion on speech through feature
analysis. It has been shown that physical load increases F0 [4,
18] and breathiness [4, 18], decreases voiced frames [8], leads
to more irregular pauses [4, 18] and articulation [4], while low-
ering formant frequencies and widening their bandwidths [6] –
though not consistently across all studies [18]. Crucially, previ-
ous authors often found the manifestation of exertion on speech
parameters to be highly speaker dependent [6, 18, 19]. We fol-
low up on these findings by investigating speech patterns related
to heart rate and perceived exertion both on aggregate and on an
individual basis using our data, while also evaluating the dis-
aggregated performance of our models with respect to different
groups.

Similarly, speech has been widely used to model affective
states, like emotion [20]. This is motivated by the presence of
affective cues in acoustic, prosodic, and tempo features [21],
which can be used to predict emotion. More recently, these
have been supplemented by automatically learnt features that
can outperform previous, expert-driven approaches [22]. Such
features can be used to predict both perceived [22] and subjec-
tive [23] emotional states. As exertion has both an objective
component and a subjective one [15], we hypothesise these fea-
tures to capture both.

To summarise, our work introduces the following contribu-
tions: a) We analyse the effect of exertion on speech production
from both a subjective and an objective perspective, using two
different measures (perceived exertion and heart rate) obtained
concurrently from speech while running. b) We expand beyond
the usual indoor treadmill scenarios to also include naturalis-
tic, outdoors recordings. c) We introduce an automated predic-
tion algorithm for objective and subjective measures of exertion
alongside traditional feature analysis. We present our method-
ology in Section 2, followed by our results in Section 3 and our
concluding remarks in Section 4.
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2. Methodology
This section outlines the data collected for this work, as well as
our analysis and modelling methodology.

Dataset: For our experiments, we use a dataset of running
speech [14], which includes multimodal recordings of biome-
chanical, HR, and speech data from 46 runners (f: 27, m:
19; mean age: 40 years; mean body-mass index (BMI): 23).
The dataset was collected in 185 running sessions both indoors
(treadmill) and outdoors (asphalt, forest roads, etc.). The HR
data were recorded in beats per minute via a Polar H9 chest strap
with a sample rate of 1Hz, whereas the audio was recorded by
the internal microphone of a smartphone strapped to the run-
ners’ arm at 16 kHz. Every participant conducted 1 − 5 runs
(median: 4) with an average duration of 33 minutes.

The runners were prompted at regular intervals (ca. 5 min-
utes) to give feedback on: a) their wellbeing level ([−5, 5]
scale), b) their self-perceived exertion level ([6 − 20] rating of
perceived exertion (RPE) scale), and c) the surface they are run-
ning on (free text; in the form of “I am running on...”). The an-
swers were given while running. Our unit of analysis was their
surface answers, as these are typically longer and, crucially, do
not contain information about the variables we are trying to pre-
dict. As the surface answer comes mere seconds after the exer-
tion one, it is reasonable to assume that the label remains the
same. We also averaged the continuous HR values over the du-
ration of the runners’ answers; this resulted in a single label per
utterance, as for the perceived exertion. In total, this resulted
in 848 instances with corresponding RPE (mean: 11.9) and HR
(mean: 154 BPMs) labels.

Features: From each audio recording, we use two stan-
dardised feature sets, the extended Geneva minimalistic acous-
tic parameter set (eGeMAPS) [21] and the Interspeech Compu-
tational Paralinguistics ChallengE feature set (ComParE) [24],
and two contemporary, deep learning-based data representa-
tions, derived from w2v2 [25]. eGeMAPS is an 88-dimensional,
interpretable feature set comprising functionals of acoustic and
prosodic low-level descriptors (LLDs) [21], while ComParE is
a 6 373-dimensional brute-forced one. Both subsets were ex-
tracted using the openSMILE toolkit [26]. Moreover, we used
the embeddings of w2v2-l-r [27] and w2v2-l-emo [22], two vari-
ants of w2v2 [25], with the first trained on more data and the
second additionally fine-tuned for dimensional emotion recog-
nition. As w2v2-l-emo showed exceptional performance on the
recognition of perceived emotional arousal [22], we expect it
to contain useful information for the prediction of HR – an ob-
jective measure of runner intensity and, thus, of physiological
arousal. Furthermore, it has been shown to be a robust predictor
of self-perceived mood [23], and thus expected to show a cor-
relation to perceived exertion as well. As features, we averaged
the contextualised embeddings (output of the penultimate layer)
over the time dimension.

Feature analysis: Feature analysis in prior work is usually
conducted under a classification paradigm [4, 6], with record-
ings being categorised in either pre- vs post-exercise [4] or high
vs low intensity [6]; the authors then proceed to analyse the dif-
ferences between the two states. However, our recording pro-
cedure does not allow for a categorisation, as the RPE scale is
continuous and reported at regular intervals, so we resorted to
correlation analysis.

We are concerned with two research questions: a) whether
there are differences in the manifestation of objective vs sub-
jective exertion in speech, and b) whether there are individual
trends in those manifestations, as reported in [6]. To answer

Table 1: Pearson correlation coefficient (PCC) between se-
lected eGeMAPS features and RPE or HR computed over se-
lected speakers. Correlation coefficients are statistically signif-
icant at the .05 level using a Wald test for both targets.

Feature RPE HR

F0 (all - std) 0.141 0.259
Loudness (all - mean) -0.131 -0.175
MFCC1 (all - mean) 0.094 0.101
Alpha ratio (voiced - mean) -0.129 -0.099
Hammarberg index (voiced - mean) 0.128 0.146
Slope [0-500 Hz] (voiced - mean) -0.114 -0.212
Spectral flux (voiced - std) 0.117 0.116
Segment length (voiced - mean) -0.101 -0.129

those, we restricted our analysis to runners satisfying the fol-
lowing criteria: i) ones who have at least 10 recorded instances,
thus lending stability to our results, and ii) ones who have a
minimum reported RPE less than 10 and a maximum of more
than 14, thus ensuring that the runners are recorded in both low
and high levels of intensity. This resulted in 25 runners (14f,
11m; mean age: 36, mean BMI: 23).

After selecting this reduced set of runners, we proceeded
to compute the Pearson correlation coefficient (PCC) between
all 88 features in eGeMAPS and both the RPE scale and HR,
and subsequently tested for significance using the Wald test.
We kept all features for which the null hypothesis is rejected
at the .05 significance level for both RPE and HR; this yielded
a total of 21 features. As most of those features are correlated
with each other (different functionals of the same LLDs; same
feature computed over different regions), we only present and
interpret a selection to minimise redundancy, where we chose
the most interpretable functionals (e. g., the mean or standard
deviation) and the wider possible region (e. g., the entire signal
over voiced regions only). Furthermore, to answer our second
research question, we proceeded with computing the PCC for
the selected features over the data of each runner separately,
this time though only for the RPE scale.

Automatic modelling: For the automatic modelling of
HR and RPE, we trained feed-forward deep neural networks
(DNNs) on our features. The experiments were conducted via
5-fold speaker-independent cross-validation. Our DNNs com-
prise 4 fully-connected layers, each with a hidden size of 30,
and are trained for 100 epochs. Each layer, except the last, is
followed by a dropout of probability 50% and a ReLU activa-
tion. The models are optimised with SGD with an initial learn-
ing rate of .001, which is reduced by 10% after five epochs
without improvement on the development set, a batch size of 16,
and a Nesterov momentum of .9. We additionally used a weight
decay of .0001. The loss function is the concordance correla-
tion coefficient (CCC) loss, which has been shown to work well
for exertion [14, 28, 29]. The model state from the best epoch
was selected for evaluation on the test set.

3. Results
We begin by presenting the feature analysis results, first for
the entire dataset in Table 1 and then for individual runners in
Fig. 1. Our analysis and subsequent selection yielded the fol-
lowing features: the standard deviation of F0, the mean of loud-
ness over all frames, the mean of MFCC1 over all frames, the
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Figure 1: Speaker-level PCC between exertion and the dif-
ferent features: F0, (Loud)ness, MFCC1, (A)lpha (R)atio,
(H)ammarberg (I)ndex, Spectral (Slope), Spectral (Flux), and
(Seg)ment (Len)gth. Each point in the swarm plot represents an
individual runner.

mean of the alpha ratio over voiced frames, the mean of spectral
slope in the range 0 Hz-500 Hz over voiced frames, the standard
deviation of spectral flux over voiced frames, and the average
duration of voiced segment length. Our first observation from
Table 1 is that both the RPE scale and the HR showcase iden-
tical trends; however, the correlations are almost always more
pronounced for the case of HR, which is consistent with pre-
vious observations showing that physiological indicators might
manifest more clearly in speech [30]. We now proceed to inter-
pret the trends presented in Table 1.

We observe an increase of F0 standard deviation with in-
creasing exertion, which is counter to the previous observation
that exertion increases sub-glottal pressure and thus increases
F0 and limits its range [4]. However, this is contradicted by
the decrease in loudness, which is heavily correlated with sub-
glottal pressure; therefore, the observed increase in F0 standard
deviation might simply be evidence of strain.

The increase of MFCC1 along with exertion indicates a rela-
tive shift of energy towards the lower frequencies; this is corrob-
orated by the concurrent hike of the Hammarberg index (ratio
of the strongest peak in [0 kHz-2 kHz] vs the strongest peak in
[2 kHz-5 kHz]) and the decrease in spectral slope. This trend is
contradicted by the decrease in alpha ratio (ratio of summed en-
ergy from [50 Hz-1000 Hz] over [1k Hz-5 kHz]), which shows
instead a shift towards higher frequencies – a trend which would
be consistent with the expected increase in breathiness due to
higher exertion. We hypothesise that a higher exertion might
correlate with a higher running speed, which in turn results in
more (and perhaps louder) steps being picked up by the micro-
phone; this effect also showed in a preliminary manual inspec-
tion of the audio files. As the sound produced by those steps is
concentrated in lower energies, this could introduce some un-
wanted noise in our interpretation. In particular, the maximum
in the Hammarberg index might be more susceptible to it than
the means or sums of the other functionals, whereas the ranges
used by spectral slope and emphasised by the cosine weights
in MFCC1 would also add more weights to those frequencies.
This interpretation is consistent with previous results showing
that exertion can be predicted from the surrounding, non-speech
audio [14], and it is something we intend to follow up in future
work.

Table 2: Pearson correlation coefficient (PCC) for the auto-
matic prediction of RPE and HR using different speech features.
For RPE, we additionally include a linear regression baseline
using the ground truth HR as the predictor, as well as the late
fusion of the best-performing speech model with this baseline.
Mean and standard deviation results over 5 folds.

Features RPE HR

HR baseline .553 (.090) N/A

eGeMAPS .158 (.144) .298 (.028)
ComParE .229 (.077) .380 (.136)
w2v2-l-r .259 (.112) .418 (.044)
w2v2-l-emo .341 (.062) .416 (.037)

w2v2-l-emo + HR .501 (.053) N/A

The last two features, spectral flux and length of voiced seg-
ments, are also related to articulation: the former indicates a
higher rate of articulation while the latter points to the pres-
ence of more pauses [18]. Both patterns are consistent with our
expectation of increased breathing cycles and thus a need for
more pauses, which could accordingly increase the articulation
rate to convey the same amount of information [4]. Addition-
ally, voiced segment length decreases with increased exertion
and HR, as was found in previous work [4, 18], and is an in-
dication of more noise-like components in the signal due to in-
creased breath emission levels [8]. However, we note that the
same caveat as before applies to spectral flux, namely that it
might be affected by an increase in running speed.

Finally, we examine the correlations computed over the data
of individual runners in Fig. 1. There, we show the correla-
tion between each runner and each feature as a single point in
a swarm plot. All correlations between features and the RPE
scale span a range between [−0.6, 0.6], which lends evidence
to previous work claiming that the manifestation of exertion in
speech is heavily individualised [6, 18]. This interesting ob-
servation serves as preliminary evidence that the prediction of
subjective exertion will greatly benefit from personalised mod-
els – a modelling approach which has already been explored for
other modalities [29]. This needs to be further elucidated in a
follow-up analysis which also checks for potential confounders,
such as the underground surface, which has been shown to in-
fluence the audio [28].

After interpreting the impact of exertion on individual fea-
tures, we proceed with modelling both RPE and HR using the
experimental setup discussed in Section 2. Our results are pre-
sented in Table 2. We additionally include a simple, linear re-
gression baseline using HR as the single predictor for RPE –
this constitutes the state-of-the-art which utilises physiologi-
cal measures as a proxy for subjective exertion. We note that
our correlation is low compared to established knowledge; in
fact, the design of the RPE scale is supposed to correspond ex-
actly with the HR [15]. However, we are only able to obtain
a PCC of .553 on our data; this moderate correlation is poten-
tially explained by the naturalistic conditions under which we
collected our dataset, and has been observed in other studies as
well [31], highlighting the importance of predicting perceived
exertion separately.

Moving to our speech-based results, we observe consis-
tently higher performance when predicting HR than when pre-
dicting the RPE scale – as also seen in the preceding correla-
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Figure 2: Intersectional model performance of w2v2-l-emo for
different age groups and genders on subjective exertion.

tion analysis. This once again showcases that the former man-
ifests more strongly in speech than the latter. The best perfor-
mance is shown by w2v2 variants. Of those, w2v2-l-emo shows
a considerably higher, and more stable, correlation than w2v2-l-
r on RPE (.341 vs .359), while both features are almost equiv-
alent for HR prediction (.416 vs .418). The fact that the gains
are observed only for perceived exertion, but not for the ob-
jective measure of HR, points to the fact that emotional infor-
mation might be beneficial only for this task; this is exploited
by w2v2-l-emo, which is just a derivative of w2v2-l-r, but ad-
ditionally fine-tuned for dimensional emotion recognition [22].
This is followed by ComParE (.229/.380), which improves over
eGeMAPS (.158/.298) but still lags behind the two learnt fea-
ture sets.

We additionally evaluated the disaggregated performance
of our model with respect to age and gender, where we cluster
the age in decades and use a self-reported binary gender cat-
egorisation. Results are presented in Fig. 2, where we show
the PCC per gender-age group for exertion prediction using the
best-performing w2v2-l-emo model, averaged over all 5 folds.
The model shows no consistent bias in favour of one gender
group or another, as male performance is higher for some age
groups and female for others, even though there are more fe-
males in the dataset. There is a trend towards better perfor-
mance for subjects aged in the middle of the scale.

The causes for this discrepancy in performance are not
readily apparent. We found no significant differences in the
ground-truth exertion rates for the two genders (two-sided
Mann-Whitney U test). We did find small negative correlations
of exertion with age (−.165) and years of running experience
(−.096), which were statistically significant with a Wald test.
As age and years of experience are highly correlated (.495), we
think the correlation with age is caused because more experi-
enced runners are a) either better able to regulate their speed and
remain at lower exertion levels, or b) more “used” to running at
extreme levels and so rate their exertion lower. a) seems to be
better backed by data as there is a stronger negative correla-
tion between age and hr (−.309), though this is confounded by
other factors [32]. We hypothesise that these differences make
for differing sub-populations in our group of runners. Naturally,
our results are impacted by the relatively limited size of some
sub-populations and should be verified in other, larger datasets.

Finally, even our best-performing method for predicting
subjective exertion falls short of the HR regression baseline,

which achieves a PCC of .533 An attempt to further improve
results via a late fusion (averaging) between the predictions of
our best-performing speech model, w2v2-l-emo, and those of
the HR baseline also fails to improve upon the baseline. This
illustrates that, for the time being, speech lags far behind the
industry standard of HR as a proxy for exertion – which makes
sense given that the RPE scale was explicitly designed to closely
follow HR [15]. To shed further light into this, we compute the
correlation of w2v2-l-emo predictions trained to predict exertion
with HR, resulting in an average correlation of .372 over the five
folds – higher than the correlation of the model with the target
it was trained to predict. This illustrates how models trained
to predict subjective measures of exertion are primarily picking
up on cues informed by objective measures, and thus fail to un-
cover any additional, subjective information. A by-product of
this is that the late fusion of a speech-based and an HR-based
predictor fails to improve performance. Therefore, further work
is required to disentangle the two variables and uncover these
more subjective aspects of exertion.

However, it remains the case that obtaining reliable mea-
surements of HR requires specialised hardware which might not
be available to the average runner, whereas our approach can be
deployed on a standard smartphone; thus, the more widespread
availability of our solution partially counterbalances the loss
in performance. Overall, we expect to see big gains when
fine-tuning these models in-domain and coupling them with a
speech enhancement frontend to remove unwanted interference
by other sources (e. g., steps, wind, etc.), both of which we in-
tend to pursue in future work. This should allow us to bridge the
remaining gap between speech-based exertion prediction and
the HR baseline which represents the current state-of-the-art.

4. Conclusion
We presented an empirical analysis on the impact of both ob-
jective (heart rate) and subjective exertion on speech collected
while running in indoor and outdoor environments. Our find-
ings show that heart rate, as a physiological measure of exer-
tion, is more clearly manifested in speech than self-assessment
using the Borg RPE scale, with a best average PCC of .418
vs one of .341. These results were obtained with embeddings
generated from pre-trained transformer models that have been
fine-tuned for dimensional emotion recognition. Our accompa-
nying exploratory data analysis partially matches our expecta-
tions of shorter breathing cycles, which lead to more pauses,
higher breathiness and articulation rate, and sub-glottal strain
manifesting in an increase of F0 variability – but the potentially
confounding effects of background noise need to be further elu-
cidated in future work. Moreover, we identified individualised
trends in the manifestation of exertion.

Follow-up work is needed to disentangle the effects of
background noise on speech features using denoising, which
would have the added benefit of improving overall performance.
Furthermore, multimodal, personalised approaches could be
employed to provide a more holistic characterisation of exer-
tion by integrating data from all available sensors. Finally, we
plan to expand our dataset to include more runners in order to
increase the robustness and validity of our findings.
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