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Abstract
The prevalence of personalized multilingual tools plays an im-
portant role in learning aids and virtual assistants. The existing
works on multilingual adaptive text-to-speech (TTS) mainly fo-
cus on fine-tuning models or extracting personal styles, such
as prosody, emotion, and identity, with the aim of adapting to
new speakers. This paper introduces the Style-Enhanced Nor-
malization TTS (STEN-TTS) approach to synthesizing multi-
lingual voice and maintaining personal styles with only 3 sec-
onds of input reference. By presenting an integrated module
(STEN) into the diffusion model, the proposed method can sim-
ulate the speaker’s style and eliminate white noise in the syn-
thesized speech. The experimental results show that our model
achieves good performance, at above 3.5 on SMOS for cross-
lingual switching. Furthermore, when using speaker verifica-
tion to assess the similarity between the ground truth and syn-
thesized voices, the accuracy reaches 82.4% with 3 seconds of
audio reference.
Index Terms: multilingual text-to-speech, adaptation, diffusion
model

1. Introduction
In recent years, the demand for multilingual adaptive TTS has
grown rapidly in modern society. This technology has a wide
range of significant uses, including tailored language learning
programs and virtual assistants that can interact with users in
their preferred language and voice. Developing a system that
can accurately copy a user’s speaking characteristics and trans-
late them into a different language is challenging because it
is impractical and expensive to collect the relevant data from
speakers of multiple languages. In addition, it is not easy to
copy individualized speech because the human voice contains
a large amount of information, including identity, prosody, and
emotion. For this reason, the study of multilingual adaptive TTS
poses difficulties for speech-processing experts.

Several techniques [1, 2] have attempted to synthesize
speech by fine-tuning a model using a sample size of 1-5 min-
utes for adaptation. Nonetheless, these techniques optimize
output through several iterations or epochs, requiring audio
and corresponding transcripts. In addition, a speaker embed-
ding module [3, 4, 5] is used by other methods to extract a
latent vector from the audio reference. This speaker vector
can capture crucial details of personal styles, including prosody
and emotion. Frameworks, such as Meta-StyleSpeech [3] and
AdaSpeech4 [6], have demonstrated their ability for high adap-
tation with the short audio input, of around a few seconds, par-
ticularly for the unseen speakers. Nevertheless, due to language
features and speaking style variations, the speaker output dif-
fers from the input when using these approaches to synthesize

Figure 1: Overview of STEN-TTS

cross-lingual speech.
For the multilingual TTS domain, many studies have ap-

plied Tacotron2 [7, 8, 9], since its outstanding output synthesis.
However, the time needed for inference in this autoregressive
model is significantly long, especially for lengthy phrases or
paragraphs and for certain words that are frequently repeated or
skipped. Recently, several speech researchers have exploited
the potential of the non-autoregressive models due to its ro-
bustness and inference speed. When training a singer speaker,
the capabilities of these models, namely FastSpeech2 [10] and
VITS [11], make it possible to synthesize high-fidelity audio.
However, training with multiple speakers produces white noise
in synthesized speech. Models, such as Your-TTS [12] and
SANE-TTS [13], build on VITS [11], produce output audio de-
graded by white noise when synthesizing cross-lingual speech
with very short audio input.

Lately, a diffusion probabilistic model [14] has been proven
capable of synthesizing high-quality images and eliminating
white noise in speech processing. More specifically, the dif-
fusion model consists of two phases, which are the forward and
reverse processes. In the forward process, the model adds a
small noise to the input and turns it into the gaussian distribution
noise. In the reverse process, the denoising model tries to disen-
tangle the input from the gaussian noise and recover the origi-
nal data in K time steps. Methods, such as DiffSinger [15], and
DiffGan-TTS [16], have achieved good results by applying dif-
fusion models to TTS. The synthesized speech using these mod-
els has high-fidelity, naturalness, and non-white noise. How-
ever, most studies exploit diffusion on a single speaker, and out-
put voices lose personal styles when applied to multiple speak-
ers.

Hence, as a way to overcome the weaknesses of this diffu-
sion model, we propose Style-Enhanced Normalization text-to-
speech (STEN-TTS), as shown in Figure 1, to take advantage
of the diffusion model and solve the problem of losing personal
style information during the reverse process by STEN. Our ex-
periments demonstrate the module’s effectiveness as shown by
the SMOS score. Our main contributions are as follows:
• To our best knowledge, this is the first diffusion framework

that allows adapting by cross-lingual synthesis with only 3
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Figure 2: Proposed architecture of STEN-TTS. Figure (a) de-
scribes the training process. Figure (b) shows the inference
procedure with K time steps.

seconds of audio input.
• Second, we introduce the Style-Enhanced Normalization

(STEN) module to the diffusion model, which can enhance
the personal styles of both seen and unseen speakers.

• Third, our proposed model achieves good results in terms of
SMOS score for cross-lingual adaptation in five languages:
English, Chinese, Japanese, Indonesian, and Vietnamese.

2. Method
2.1. Text-to-Speech

The overall architecture of the TTS model built on FastSpeech2
comprises the encoder, variance adaptor, and decoder as shown
in Figure 2-a. The encoder takes the phoneme embedding as
the input and converts it into a hidden sequence before combin-
ing it with the personal style (PS) vector by the Style-Adaptive
Layer Norm [3]. Next, at the variance adaptor, this hidden se-
quence is augmented with other information, namely duration
for each phoneme, pitch contour, and energy. Similarly to the
encoder, the decoder fuses this hidden sequence and PS vector
to produce the final mel-spectrogram, which can be converted
to a signal wave using vocoders such as Hifi-GAN [17].

2.2. Style Encoder

A few seconds of audio X is converted to mel-spectrogram Min

before being input to the Style Encoder (StyEnc) [3] to extract
the personal style (PS), as shown in Figure 2-a. The output of
this module is a 128-dimensional vector. More specifically, the
StyEnc module has three blocks, each with its own function-
ality: spectral extraction, temporal extraction, and multi-head
attention.

PS = StyEnc(Min), PS ∈ RN . (1)

• Spectral Extraction: This module has three linear layers,
followed by spectral normalization and the Mish activation
function. This block receives mel-spectrogram (Min) as the
input and transforms it into a sequence of the feature vector.

• Temporal Extraction: This module includes, consecutively,
convolutions and batch normalization, which are used to cap-
ture all important information of the input speaker.

• Multi-head Attention: Next, as the output of the temporal
block passes to Multi-head Attention, this module obtains the
principal features of the speaker by applying three operations:
query, key, and value. These features are passed to the fully
connected layer, where temporal average pooling is used to
compress them into a 128-dimensional vector.

2.3. Style-Enhanced Diffusion Mechanism

The Diffusion model [14] adds gaussian noise to the initial data
sample during the training process as shown in Figure 2-a. After
T time steps, the model turns the input data into a gaussian noise
distribution:

Mt =
√
ᾱt(Mt−1) +

√
1− ᾱtϵt, t ∈ (1, ..., T ), (2)

where the input sample M0 = Min, and after adding small
noises consecutively in T time steps, this end with MT ∼
N (0, I). Furthermore ᾱt =

∏t
s=1 αs. Then by applying the

Markov chain, we have the following formula:

q(Mt|M0) = N (Mt;
√
ᾱtM0, (1− ᾱt)I). (3)

For training the denoising network ϵθ , the model predicts
noise ϵ ∼ N(0, I) by using the input Mt. The target function
during the training process is as follows:

L = EM,ϵ∼N (0,I)∥ϵ− ϵθ(Mt, t)∥22. (4)

U-Net [18] is typically chosen as the denoising network ϵθ ,
and during the denoising process, the network often removes
many of the personal styles. Thus, we propose a method that
can retain the detailed vital information as well as eliminate
the white noise in the synthesized speech. More precisely, the
Style-Enhanced Normalization (STEN) uses two types of infor-
mation, i.e., from the text encoder (TE) and the personal styles
(PS). Given the hidden vector h - a transformation of the input
mel-spectrogram, we apply the layer normalization first:

y =
h− E [h]√
V ar [h]

∗ γ + β, (5)

where γ, β are learnable parameters during the training process.
Next, we augment the text representation information:

y = y + Conv(TE). (6)

Then we use the personal style (PS) vector to enhance the
adaptability of the model:

y = fg(PS) ∗ y + fh(PS). (7)

Here, fg and fh are the fully connected layer that performs scal-
ing and shifting operations on the hidden vector y consecutively.
By applying the STEN in each residual block of U-Net, the de-
noising module ϵθ can synthesize output that is more similar to
the reference audio in only a few seconds.

In the inference procedure, the model takes the TTS output
as an input M̂out and tries to denoise it by K time steps as
shown in Figure 2-b.
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Table 1: MOS and SMOS for SEEN and UNSEEN speakers in 3 seconds.

VN JA ZH ID EN

MOS SMOS MOS SMOS MOS SMOS MOS SMOS MOS SMOS

SEEN
Speaker

Ground truth 4.65 4.72 4.8 4.66 4.95 4.81 4.69 4.60 4.37 4.58

StyleSpeech 2.78 3.14 2.76 3.34 3.19 3.25 2.46 3.13 3.20 3.34

DiffSinger 2.79 3.30 2.64 3.48 3.13 3.41 2.65 3.36 2.11 2.54

STEN-TTS 2.89 3.34 2.85 3.68 3.03 3.55 2.78 3.58 3.20 3.79

UNSEEN
Speaker

Ground truth (VCTK) 4.40 4.52 4.40 4.52 4.40 4.52 4.40 4.52 4.40 4.52

StyleSpeech 1.98 2.24 2.47 2.93 3.07 3.03 1.85 2.44 2.10 2.55

DiffSinger 2.00 2.39 2.37 3.17 3.21 3.22 2.21 2.71 2.53 2.5

STEN-TTS 2.00 2.37 2.34 3.19 2.73 3.3 2.12 2.70 3.01 3.72

3. Experiments
3.1. Dataset

Table 2: Number of speakers and training hours in the dataset

Language EN ZH ID JA VN Total
Speakers 1151 218 400 100 54 1923
Hours 245 85 44 26 26 426

We trained the STEN-TTS in five languages: English, Chinese,
Indonesian, Japanese, and Vietnamese as shown in Table 2. For
English, LibrisTTS-clean-100 and LibrisTTS-clean-360 [19]
were selected for our experiment. We used AISHELL-3 [20]
and INDspeech NEWS LVCSR [21] datasets for Chinese and
Indonesian, respectively. Japanese versatile speech (JVS) [22]
is used since it is a high-quality corpus for Japanese. Finally,
Vietnamese is a dataset comprising 54 speakers in both North-
ern and Southern Vietnam. After combining these datasets, we
split them into two parts, training and validation. Validation has
all languages, like the training set, and is used as seen speakers
to check the performance of our proposed method. Next, CSTR
voice cloning toolkit (VCTK) [23] was chosen to check the
adaptation of the system for unseen speakers, since the VCTK
Corpus includes 110 English speakers with different accents.

3.2. Implementation Settings

First, all audio in all languages was re-sampled to 22 050Hz
by the Librosa library1. Next, an espeak library2 was used to
convert text to phonemes-level. Then, all audio and their corre-
sponding phoneme transcripts were passed to an MFA tool3 for
time-aligning. To convert the audio signal to mel-spectrogram,
we use a filter length of 1024, a hop length of 256, and a window
size of 1024. All of our experiments were trained in 90,000 iter-
ations on two NVIDIA A100 GPUs. The batch size was config-
ured to 64, we used Adam optimizer [24] in beta versions (0.9,
0.98), and the initial learning rate was 0.001. The total trainable
parameter of STEN-TTS is 51M. In addition, we reproduced
StyleSpeech [3] and DiffSinger [15] based on the configurations
reported by the authors in their papers and added some specific
modules to deal with multilingual adaptive training.

1https://github.com/librosa/librosa
2https://github.com/espeak-ng/espeak-ng
3https://github.com/MontrealCorpusTools/mfa-models

3.3. Evaluation Settings

We collected speakers and sentences from the validation set.
More specifically, three speakers from each of the five lan-
guages were chosen randomly, and we got 15 speakers in total.
For the text, 20 English sentences were selected and translated
into others. Finally, speeches were synthesized for all possi-
ble combinations of speakers and sentences above, described in
Figure 1. Note that we only capture 3 seconds from the audio
for this evaluation.

For subjective evaluation, 10 native speakers of each lan-
guage participated, including Vietnamese, Chinese, Japanese,
and Indonesian, for a total of 40 participants. Each participant
only listened to synthesized speech based on his/her mother lan-
guage. In addition, we divided the number of synthesized En-
glish audio equally among the 40 people. After listening to the
synthesized speech, the participants rated it from 1 to 5 for MOS
(mean opinion score), which indicated very bad and very natural
output, respectively. Next, they listened to the audio reference
to check how similar the input and synthesized voices were on
the SMOS (similarity MOS) scale, with 1 as very different and
5 as identical. Furthermore, we used speaker verification and
speaker visualization as an objective evaluation to better under-
stand our model.

4. Results and Discussion
4.1. Evaluation for seen and unseen speakers

Table 1 shows the results of three different models on two met-
rics, MOS and SMOS. Note that for ease of display we use the
following abbreviations: Vietnamese (VN), Japanese (JA), Chi-
nese (ZH), Indonesian (ID), and English (EN). For the column
labeled Vietnamese (VN), we used many speakers from the five
languages (VN, JA, ZH, ID, EN) to synthesize Vietnamese. Af-
ter obtaining the results from participants, we statistically and
carefully calculated the values for each language. Although our
proposed method surpasses the previous research on MOS, the
outcome is not significantly different for the seen speaker. Our
proposed model has some common modules with StyleSpeech
and Diffusion, and thus MOS is around 3 for three different
models. However, by using STEN in the diffusion model, it
considerably outperforms the other models in similarity results
(SMOS). Most languages achieved approximately 3.5, which is
higher than the other studies, indicating that STEN improves
retention of personal styles during the denoising process of the
diffusion model.
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Table 3: SMOS for cross-lingual output of 3 seconds

StyleSpeech DiffSinger STEN-TTS

VN JA ZH ID EN VN JA ZH ID EN VN JA CN ID EN

VN-to* 3.51 3.23 3.10 3.33 3.66 3.75 3.73 3.86 3.42 2.77 3.63 3.5 3.8 3.48 3.61

JA-to* 3.33 2.13 2.73 2.97 2.82 3.36 2.30 3.00 2.72 2.16 3.21 2.26 2.76 2.93 3.55
ZH-to-* 3.18 3.63 3.53 3.21 3.25 3.27 3.56 3.73 3.42 2.66 3.39 3.93 3.76 3.78 3.94
ID-to* 3.03 2.96 3.10 3.00 3.41 3.24 3.53 3.13 3.30 2.55 3.21 3.56 3.70 3.48 3.44
EN-to* 2.60 2.66 3.00 3.12 3.66 3.36 3.30 2.93 3.30 2.66 3.06 3.33 3.33 3.39 4.00

We then investigated the ability of our proposed method
with unseen speakers. We randomly selected speakers from the
VCTK dataset and used the same text as that used in the eval-
uation of seen speakers for each language. Table 1 shows that
the proposed model considerably outperforms the other mod-
els in similarity result (SMOS) for most synthesized languages,
namely Japanese, Indonesian, and English.

4.2. Cross-Evaluation

Next, we evaluated the ability of our approach in terms of trans-
ferring cross-lingual data from the subjective test. The first row
of Table 3 indicates SMOS scores when the Vietnamese speak-
ers are transformed into the five languages listed in the column,
as done for the remaining languages. The results show that our
method surpasses StyleSpeech and DiffSinger when performing
a cross-lingual task. The SMOS scores reached nearly 3.5 for
Chinese, Indonesian, and English.

4.3. Similarity Accuracy

Table 4: SIM accuracy for three different durations

3 seconds 5 seconds 10 seconds
StyleSpeech 0.75 0.75 0.741
DiffSinger 0.759 0.806 0.778
STEN-TTS 0.824 0.796 0.824

We also conducted an objective evaluation with similarity met-
rics on the seen dataset. We used the ECAPA-TDNN [25]
toolkit implemented by SpeechBrain for speaker verification.
More specifically, after synthesizing data to other languages,
the reference speaker and the synthesized speaker are input to
the ECAPA-TDNN [25] model to evaluate the similarity. The
output of ECAPA-TDNN is a binary value, and the prediction
is 1 if the two speakers are evaluated as the same speaker and 0
otherwise. Three different durations, 3, 5, and 10 seconds, were
used as the reference input for this evaluation. STEN-TTS has
an accuracy of about 80% in three settings as shown in Table 4.
StyleSpeech and DiffSinger’s accuracy for 3 seconds is around
75%, but STEN-TTS still maintains an accuracy of 82.4%, no-
tably higher than the other models.

4.4. Speaker Visualization
In order to obtain better insight into the effectiveness of STEN-
TTS and other models, we analyzed the synthesized speech of 3
seconds and its ground truth. Specifically, we continued to use
the ECAPA-TDNN model to extract the embedding of speakers,
and the dimension here is 192. To visualize this embedding, we

Figure 3: Visualized embedding of synthesized and ground truth
speaker in the seen dataset by t-SNE

passed it to the t-SNE algorithm [26] to reduce the size, with
the results displayed in Figure 3. Note that each symbol repre-
sents a different language and each color represents a different
speaker. We can see that STEN-TTS can clearly separate speak-
ers, and each speaker’s pair of ground truth and multi-lingual
synthesis remains in the same cluster, while in contrast, these
pairs in StyleSpeech tend to become disperse. Moreover, in
DiffSinger, all results for speakers JP, ZH, and ID appear very
close to each other.

5. Conclusions
In this work, we demonstrated STEN-TTS, a method that repli-
cates a speaker’s style with only 3 seconds of audio refer-
ence and then synthesizes it into multiple languages. Our pro-
posed method enhances personal styles for both seen and un-
seen speakers by using the Style-Enhanced Normalization mod-
ule in the diffusion process. We conducted both subjective and
objective evaluations, and the STEN-TTS was proven capable
of achieving good results compared to previous models. Al-
though the synthesized voice of our approach is similar to the
ground truth voice, the MOS result does not show clear supe-
riority because it has some common modules with the previous
studies. Furthermore, STEN-TTS suffers from time inference
because the diffusion model needs to disentangle many steps
in the reverse process before returning the final result. Accord-
ingly, we plan to analyze and solve this limitation in future work
to improve the existing work.
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