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Abstract
There are individual differences in expressive behaviors driven
by cultural norms and personality. This between-person vari-
ation can result in reduced emotion recognition performance.
Therefore, personalization is an important step in improving the
generalization and robustness of speech emotion recognition. In
this paper, to achieve unsupervised personalized emotion recog-
nition, we first pre-train an encoder with learnable speaker em-
beddings in a self-supervised manner to learn robust speech
representations conditioned on speakers. Second, we propose
an unsupervised method to compensate for the label distribu-
tion shifts by finding similar speakers and leveraging their la-
bel distributions from the training set. Extensive experimen-
tal results on the MSP-Podcast corpus indicate that our method
consistently outperforms strong personalization baselines and
achieves state-of-the-art performance for valence estimation.
Index Terms: Speech Emotion Recognition, Personalization,
Adaptation.

1. Introduction
With the ubiquity of voice assistive technologies, speech emo-
tion recognition (SER) is becoming increasingly important as
it allows for a more natural and intuitive interaction between
humans and machines. Although SER technology has made
significant progress in recent years, accurately detecting emo-
tions from speech remains a challenging task. This is partly
due to the vast variability in how people express their feelings
through speech, which can depend on culture [1], gender [2],
or age [3], among others. Personalization is a promising solu-
tion to address the variability of emotional expression in speech.
By tailoring emotion recognition systems to match individuals’
unique expressive behaviors, the approach can lead to a more
robust and inclusive model that is better equipped to accurately
detect emotions for a wide range of users.

Existing studies on personalized emotion recognition gen-
erally use hand-crafted features of speech on datasets with a
small number of speakers (ten or fewer speakers) [4, 5, 6, 7, 8].
Recently, SER systems achieve state-of-the-art results [9, 10]
via fine-tuning large pre-trained speech encoders such as Hu-
BERT [11] or wav2vec2.0 [12]. This raises three important
questions: (1) What happens to the personalization gap as the
number of speakers increases for fine-tuned encoders? (2) How
do existing personalization methods behave when the input
speech features are not fixed? (3) How can we incorporate per-
sonalization with pre-trained encoders to boost performance?

In this paper, we perform extensive experiments on the
MSP-Podcast corpus [13] with more than 1,000 speakers to an-
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swer these questions. We first show that as the number of speak-
ers increases, the personalization gap (the performance dif-
ference between speaker-dependent and speaker-independent)
of fine-tuned models decreases, which motivates the need for
methods that adapts the pre-trained weights for personalization
prior to fine-tuning. Hence, we propose to continue the pre-
training process of the speech encoder jointly with speaker em-
beddings (see Figure 2 (a)). We also introduce a simple yet
effective unsupervised personalized calibration step to adjust
label distribution per speaker for better accuracy (see Figure
2 (b)). The proposed methods are unsupervised, requiring no
prior knowledge of the test labels. Experimental results on
arousal and valence estimation show that the proposed meth-
ods achieve state-of-the-art results for valence estimation while
consistently outperforming the encoder fine-tuning baseline and
a recent personalization method evaluated on the same dataset
[14]. The major contributions of this work are as follows. (1)
We propose a method for personalized adaptive pre-training to
adjust the existing speech encoders for a fixed set of speakers.
(2) We propose an unsupervised personalized post-inference
technique to adjust the label distributions. (3) We provide exten-
sive experimental results along with an ablation study to demon-
strate the effectiveness of the methods. (4) We further show
that our methods can be extended to unseen speakers without
the need to re-train any component, achieving superior perfor-
mance compared to the baselines.

2. Related work
Adaptive Pre-training. Adaptive pre-training resumes the pre-
training process for the pre-trained encoders on either domain
data (domain adaptive pre-training) or task data (task adaptive
pre-training) to improve the downstream task performance of a
specific domain or dataset [15]. The method has been shown to
be highly effective for a wide range of natural language process-
ing and computer vision applications such as machine trans-
lation [16], sentiment analysis [17], and image classification
[18]. In the field of speech emotion recognition, Chen et al.
[10] propose a novel pseudo-label generation method in com-
bination with task-adaptive pre-training for wav2vec2.0 [12] to
boost emotion recognition accuracy. However, there is no prior
work exploring personalized adaptive pre-training.
Personalized Speech Emotion Recognition. There have been
a few methods [5, 8, 4, 6, 14] proposed for personalized SER.
However, most of the existing work are validated on datasets
with limited speakers. Most relevant to our work is the unsu-
pervised personalized method proposed by Sridhar et al. [14],
which is validated on the same dataset (MSP-Podcast) as in this
paper. They propose to find speakers in the train set to form the
adaptation set whose acoustic patterns closely resemble those
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Table 1: Details and statistics of our splits for MSP-Podcast.

split train validation test-a test-b test-c

# utterances 26470 5933 1684 8434 7304
# speakers 987 41 50 50 62
total duration 44.2h 10h 2.9h 13.8h 9.5h
corpus version v1.6 v1.6 v1.6 v1.6 v1.10

of the speakers in the test set. Specifically, they apply Prin-
cipal Component Analysis (PCA) on the feature set proposed
for the computational paralinguistics challenge (ComParE) [19]
and fit Gaussian Mixture Models to measure the speaker simi-
larity based on the KL divergence metric. Samples of the se-
lected speakers are given more weight during the training pro-
cess. With a light architecture, i.e., the multi-layer perceptron,
the method is shown to be highly effective for valence personal-
ization. However, it requires extra training (model adaptation)
during inference and thus can not be extended to new speakers.

In contrast to prior work, we explore personalization with
fine-tuned encoders instead of pre-extracted features, which
achieves superior performance compared to the best-performing
models. For example, our weakest baseline (HuBERT-large
fine-tuning) achieves a two times higher Concordance Corre-
lation Coefficient (CCC) compared to the reported results from
Sridhar et al. [14] for valence estimation. More importantly, our
method is extensible and remains effective for unseen speakers
without the need to re-train any components.

3. Preliminary information
Problem Formulation. Unsupervised personalized speech
emotion recognition: Given a speech dataset containing N ut-
terances with emotion labels (arousal or valence) and speaker
IDs D = {(ui, yi, si)}Ni=1. We assume access to all informa-
tion except for the emotion labels of the test set during the train-
ing phase. Our goal is to produce a robust emotion recognition
model that performs better than a model exposed to the same
amount of data excluding speaker ID information. We further
want our method to be extensible to new speakers outside of D.
Dataset. We use the MSP-Podcast corpus [13] as our dataset D.
MSP-Podcast is the largest corpus for speech emotion recogni-
tion in English, containing emotionally rich podcast segments
retrieved from audio-sharing websites. Each utterance in the
dataset is annotated using crowd-sourcing with continuous la-
bels of arousal, valence, and dominance along with categorical
emotions. In this paper, we focus on arousal and valence es-
timation. The labels range from 1 to 7. The dataset contains
pre-defined train, validation, and test sets, namely Dtr , Dval,
Dte, which are subject independent. We use two versions of the
dataset, namely v1.6 and v1.10, for the experiments. To be con-
sistent with prior studies [20, 14, 9], most of our experiments
are based on MSP-Podcast v1.6. We remove all the utterances
marked with “Unknown” speakers in accordance with our prob-
lem formulation. Following Sridhar et al. [14], we split the test
set into two subsets test-a and test-b that share the same set of
speakers. Each speaker in test-a contains 200s of speech in to-
tal while test-b contains the rest of the recordings. test-a is used
to train speaker-dependent models along with the train set. For
experiments on the unseen speakers, we evaluate the models on
the speakers who are in the v1.10 test set but not in the v1.6 test
set, namely test-c. Table 1 provides the details and statistics of
our splits for the MSP-Podcast dataset.
Pre-trained Speech Encoder. In this work, we use HuBERT

Figure 1: Performance gap between speaker-dependent and
speaker-independent models for valence estimation with vary-
ing the number of training speakers.

[11] as our pre-trained encoder E due to its superior perfor-
mance [9, 21]. HuBERT consists of two main components,
namely a 1D CNN and a Transformer encoder [22]. The 1D
CNN takes raw waveforms as inputs and returns low-level fea-
ture representations of speech. Then, the features are passed
into the Transformer encoder to generate high-level feature rep-
resentations via the self-attention mechanism. During the pre-
training process, HuBERT first generates pseudo-labels by per-
forming K-means clustering on the pre-extracted features, e.g.,
MFCCs. Then, the model learns in a self-supervised man-
ner through the task of predicting pseudo-labels for randomly
masked frames. Therefore, the pre-training loss Lpt for Hu-
BERT can be defined as the sum of the cross-entropy loss com-
puted over the masked frames.
Personalization Gap. To motivate our proposed methodology,
we investigate the potential gain from the personalization of
fine-tuned HuBERT on valence regression (the dimension with
the most potential gain from personalization as demonstrated
by Sridhar et al. [14]). In particular, we first create subsets Dk

tr

of Dtr with k speakers, where k ∈ {50, 100, 250, 500, 987}.
Speaker-independent models with k speakers are trained on
Dk

tr sets. To make the results stable, we ensure that Di
tr ⊂

Dj
tr,∀i < j. For speaker-dependent models with k speakers,

we randomly remove 50 speakers (# speakers in test-a) from
Dk

tr to get D̂k
tr , and fine-tune the models on D̂k

tr∪ test-a. For
all experiments, we fine-tune the HuBERT-base encoder on the
generated sets and report the performance on test-b. Since test-a
and test-b share the same set of speakers, we consider the per-
formance of speaker-dependent models to loosely correlate with
the performance of supervised personalization methods, and
hence, the performance gap between speaker-dependent and
speaker-independent models captures the potential gain from
personalization. Figure 1 demonstrates the inverse relationship
between k and the performance gap. The evaluation metric
is the Concordance Correlation Coefficient (CCC ↑). It sug-
gests that given sufficiently large and diverse training data, the
pre-trained encoders become robust enough to learn both the
general emotional patterns and the unique characteristics of dif-
ferent groups of speech expressions such that supervised train-
ing of the model on the test speakers leads to marginal gains.
Hence, to enhance the performance of the pre-trained encoders
for a target speaker, we can: (1) make the input data personal-
ized (pre-processing); (2) modify the weights of the pre-trained
encoder for the target speaker; or (3) adjust the label predictions
to be more personalized (post-processing). Existing studies on
personalized SER, e.g., [5, 8, 14], focus on the first approach.
In this work, we explore the other two alternatives.
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Figure 2: Overview of our proposed method. (a) Personalized Adaptive Pre-Training (PAPT) pre-trains the HuBERT encoder with
learnable speaker embeddings in a self-supervised manner. (b) Personalized Label Distribution Calibration (PLDC) finds similar
training speakers and calibrates the predicted label distribution with the training label statistics.

Performance variance across speakers. Though simply fine-
tuning HuBERT achieves promising overall performance on
MSP-Podcast for speech emotion recognition, Wagner et al.
[21] find that there is a huge variance across the per-speaker per-
formance. We investigate whether the performance variance is
due to the feature shift or the label shift. Specifically, to measure
the feature and label shift for each target speaker, we calculate
the KL divergence between the feature and label distributions
of the target speaker and those of the whole training set. Then
we calculate the Pearson correlation coefficient (PCC) between
the feature/label shift and the speaker performance. For arousal
estimation, we find that the PCC between the feature shift and
the regression performance is −0.714 while the PCC between
the label shift and performance is −0.502. The results suggest
that both feature and label shifts contribute to the performance
variance. Moreover, the correlation between the feature shift
and label shift is 0.285, which suggests the potential of using
features to detect and remove label shifts.

4. Method
Personalized Adaptive Pre-training (PAPT). Inspired by
prior study in task-adaptive pre-training [15] and the prob-
lem of feature shift described above, we propose to perform
adaptive pre-training on D = {(ui, si)}Ni=1 along with train-
able speaker embeddings in a self-supervised manner. Specif-
ically, in addition to the original speech encoder E, we train
a speaker embedding network S to extract the speaker embed-
ding ei = S(si) ∈ Rd, where d is the embedding size for the
Transformer. Then, the speaker embedding ei is summed with
the utterance feature fi = E(ui) to get a personalized feature
representation fp

i = fi + ei. For personalized pre-training,
fp
i is used to compute the pre-training loss (cross-entropy) on

pseudo-label prediction for masked frames.

Lpt = −
Nb∑

i=1

Mi∑

t=1

logP (lit|fp
it), (1)

where Nb is the number of utterances in the batch, Mi is the
number of masked frames for utterance ui, and lit denotes the
pseudo-label for the t-th masked frame in utterance ui. For ER
downstream tasks, we reduce the temporal dimension for fp

i by
mean-pooling and feed the output to a fully-connected layer to
produce the label predictions.
Personalized Label Distribution Calibration (PLDC). Moti-
vated by the problem of label distribution shift described above,
we further want to add a personalized post-inference technique
to correct the predicted label distributions. Specifically, given
the predictions for a target speaker, the main idea is to identify

the most similar speakers from the train set based on the feature
similarity and use their label distribution statistics (means and
standard deviations) to calibrate the predicted label distributions
of the target test speaker. In particular, for speaker s in both the
train and test set, we extract the features for each utterance of s
and average them to form the speaker vector

vs =

∑Ns
k=1 Ēp

ft(u
k
s )

Ns
, (2)

where Ep
ft denotes the ER-fine-tuned model of Ep (the person-

alized adapted version of E), Ēp
ft(u

k
s ) denotes the mean-pooled

vector representation for utterance uk
s , and Ns is the number of

utterances from speaker s.
Then, for each speaker in the test set, we retrieve the top-k

most similar speakers in the train set based on the cosine simi-
larity between the speaker vectors. Next, we average the label
distribution statistics from the retrieved speakers to get an esti-
mation of the mean µ̄ and standard deviation σ̄. Finally, each
predicted label y for the target speaker would be shifted as

ỹ =
y − µ

σ
× σ̄ + µ̄. (3)

where µ and σ are the mean and standard deviation for the pre-
dicted label distribution. Optionally, if we want to only shift the
mean or standard deviation, we can replace µ̄ as µ or σ̄ as σ in
the above equation, respectively.

5. Experiments and Discussions
Implementation and Training Details. We perform adaptive
pre-training for ten epochs using the Adam optimizer with a
linear learning rate scheduler (5% warm-up and a maximum
learning rate of 1e−5) on a single NVIDIA Quadro RTX8000
GPU. The models are adaptively pre-trained on the combination
of the official train, validation, and test-b sets and validated on
test-a. All other settings are identical to HuBERT’s pre-training
configurations. For downstream fine-tuning experiments, we
add a light interpreter on top of the HuBERT encoder to pro-
cess the mean-pooled extracted representations. The interpreter
consists of two fully-connected layers of size {128, 32} with
ReLU activation, 1D BatchNorm, and a dropout ratio of 0.1 in-
between the layers. The downstream models are fine-tuned for
at most ten epochs using Adam optimizer (5e−5 learning rate)
with early stopping. Following prior work [14], the models are
optimized with a CCC loss LCCC = 1− CCC for arousal and
valence estimation. All of our experiments are performed with
the HuBERT-large architecture, except for the personalization
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Table 2: Evaluations on MSP-Podcast (test-b) in terms of CCC
(↑). O-CCC refers to the overall CCC between the prediction
and ground truth. A-CCC denotes the average CCC for each
test speaker. Numbers in the brackets are the standard de-
viations calculated across speakers. Our proposed PAPT-FT
achieves superior performance compared to the baselines.

Arousal Valence

Metric O-CCC A-CCC O-CCC A-CCC

Vanilla-FT 0.712 0.512 0.607 0.514
B2 0.735 0.517 0.650 0.569
TAPT-FT 0.717 0.518 0.630 0.542

PAPT-FT 0.740 0.531 (0.177) 0.663 0.569 (0.133)
+ µ shift 0.722 0.528 (0.190) 0.660 0.566 (0.134)
+ σ shift 0.732 0.541 (0.168) 0.662 0.578 (0.131)
+ (µ, σ) shift 0.713 0.540 (0.178) 0.657 0.575 (0.131)

gap experiments, as the model used to generate the pseudo-
labels for HuBERT-base is not publicly available. We report two
evaluation metrics, namely the Overall CCC (O-CCC), which
concatenates the predictions on all test speakers before com-
puting a single CCC score for the test set, and A-CCC, which
denotes the average CCC scores computed for each test speaker.
Baselines. We compare our method to three baselines: (1)
Vanilla-FT in which E is fine-tuned on Dtr . (2) B2 represents
the data weighting method proposed by Sridhar et al. [14]. (3)
Task-Adaptive Pre-Training (TAPT) in which encoder E is con-
tinued pre-training on D for ten epochs.
Experimental Results on test-b. Table 2 shows the compari-
son between our proposed methods and the baselines on MSP-
Podcast. Compared to the best-performing baselines, our meth-
ods achieve superior performance on both arousal and valence
estimation, with a gain of 0.023 and 0.009 on arousal and va-
lence A-CCC respectively. Notably, we achieve state-of-the-art
results for the task of valence estimation, in which our Overall-
CCC score achieves 0.665 (on the whole test set of MSP-
Podcast v1.6) compared to 0.627 as reported by Sriniva et al.
[9]. When using PLDC, we can observe a significant increase
in A-CCC, which suggests performance improvement for indi-
vidual speakers. However, we can also see that as A-CCC im-
proves with PLDC, O-CCC generally decreases. We attribute
this to the high variance in the number of utterances of each
speaker in the test set. Furthermore, Table 2 also demonstrates
that PLDC consistently achieves the best performance when we
only perform σ shifting, while µ shifting often reduces both A-
CCC and O-CCC. We hypothesize that it is more difficult to
estimate the mean than the (high) variance for a speaker with a
wide range of arousal/valence labels.
Evaluations on Unseen Speakers. We further validate the ro-
bustness of our method on unseen speakers (test-c). We di-
rectly make inference with Ep

ft on test-c without re-training any
components. Specifically, for each utterance from an unseen
speaker, we provide Ep

ft with a training speaker embedding as a
proxy for the unseen speaker. We apply the same strategy used
in our PLDC module, in which we compute a vector representa-
tion for the current unseen speaker and each speaker in the train
set as in Equation 2. However, we use the original pre-trained
encoder E instead of Ep

ft as the model cannot extract feature
representation for the current (unseen) speaker without a proxy
speaker. We then use the (seen) speaker in the train set with the
highest similarity score as a proxy for the current speaker. The
retrieved proxy speakers can later be used for the PLDC mod-
ule to further boost prediction performance, as demonstrated in

Table 3: Evaluations on unseen speakers (test-c).

Arousal Valence

Metric O-CCC A-CCC O-CCC A-CCC

Vanilla-FT 0.360 0.263 0.243 0.290
TAPT-FT 0.384 0.267 0.33.9 0.306

PAPT-FT 0.398 0.280 0.321 0.322
+ µ shift 0.374 0.284 0.299 0.320
+ σ shift 0.386 0.294 0.320 0.332
+ (µ, σ) shift 0.363 0.297 0.301 0.329

Table 4: Effect of different speaker embedding fusion positions.

Last First Prefix None

Lval
pt (↓) 2.78 2.85 2.81 3.15

A-CCC (↑) 0.531 0.519 0.528 0.512

Table 3. Our proposed methods outperform the baselines by a
significant margin, with up to 0.030 and 0.026 on A-CCC for
arousal and valence estimation, respectively. It is important to
note that the B2 method [14] is not applicable in this case as it
would require re-adjustment of the data sample weights given
the new speakers, which requires re-training the model.
Ablation Study. Table 4 shows the experimental results for
arousal estimation on test-b of fine-tuned encoders (without
PLDC) adaptively pre-trained with different fusion positions of
the speaker embeddings. In particular, Last refers to our pro-
posed setting in which the speaker embeddings are added to
the output of the Transformer encoder; First refers to speaker
embeddings being added to the inputs of the first layer of the
Transformer encoder, and Prefix refers to the setting in which
the speaker embeddings are concatenated as prefixes to the in-
puts of the Transformer encoder. None refers to the vanilla Hu-
BERT encoder. We also provide Lval

pt , the best pre-train loss on
the validation set, i.e., test-a, during the PAPT phase. We find
that Last provides the best results.

6. Conclusion
In this paper, we propose two methods to adapt pre-trained
speech encoders for personalized speech emotion recognition,
namely PAPT, which jointly pre-trains speech encoders with
speaker embeddings to produce personalized speech represen-
tations, and PLDC, which performs distribution calibration for
the predicted labels based on retrieved similar speakers. We val-
idate the effectiveness of the proposed techniques via extensive
experiments on the MSP-Podcast dataset, in which our models
consistently outperform strong baselines and reach state-of-the-
art performance for valence estimation. We further demonstrate
the robustness of the personalized models for unseen speakers.

7. Acknowledgement
This work is supported by the National Science Foundation un-
der Grant No. 2211550. Research was also sponsored by the
Army Research Office and was accomplished under Coopera-
tive Agreement Number W911NF-20-2-0053. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Army Research Office
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

639



8. References
[1] A. von Suchodoletz and R. Hepach, “Cultural values shape the

expression of self-evaluative social emotions,” Scientific Reports,
vol. 11, no. 1, pp. 1–14, 2021.

[2] A. M. Kring and A. H. Gordon, “Sex differences in emotion: ex-
pression, experience, and physiology.” Journal of personality and
social psychology, vol. 74, no. 3, p. 686, 1998.

[3] J. M. Montepare and H. Dobish, “Younger and older adults’ be-
liefs about the experience and expression of emotions across the
life span,” Journals of Gerontology Series B: Psychological Sci-
ences and Social Sciences, vol. 69, no. 6, pp. 892–896, 2014.

[4] L. Chen, W. Su, Y. Feng, M. Wu, J. She, and K. Hirota, “Two-
layer fuzzy multiple random forest for speech emotion recognition
in human-robot interaction,” Information Sciences, vol. 509, pp.
150–163, 2020.

[5] J.-B. Kim and J.-S. Park, “Multistage data selection-based un-
supervised speaker adaptation for personalized speech emotion
recognition,” Engineering applications of artificial intelligence,
vol. 52, pp. 126–134, 2016.

[6] N. Jia and C. Zheng, “Two-level discriminative speech emo-
tion recognition model with wave field dynamics: A personal-
ized speech emotion recognition method,” Computer Communi-
cations, vol. 180, pp. 161–170, 2021.

[7] N. Vryzas, L. Vrysis, R. Kotsakis, and C. Dimoulas, “Speech
emotion recognition adapted to multimodal semantic reposito-
ries,” in 2018 13th International Workshop on Semantic and So-
cial Media Adaptation and Personalization (SMAP). IEEE, 2018,
pp. 31–35.

[8] J. Bang, T. Hur, D. Kim, T. Huynh-The, J. Lee, Y. Han, O. Banos,
J.-I. Kim, and S. Lee, “Adaptive data boosting technique for robust
personalized speech emotion in emotionally-imbalanced small-
sample environments,” Sensors, vol. 18, no. 11, p. 3744, 2018.

[9] S. Srinivasan, Z. Huang, and K. Kirchhoff, “Representation learn-
ing through cross-modal conditional teacher-student training for
speech emotion recognition,” in ICASSP 2022-2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022, pp. 6442–6446.

[10] L.-W. Chen and A. Rudnicky, “Exploring wav2vec 2.0 fine-
tuning for improved speech emotion recognition,” arXiv preprint
arXiv:2110.06309, 2021.

[11] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhut-
dinov, and A. Mohamed, “Hubert: Self-supervised speech rep-
resentation learning by masked prediction of hidden units,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 29, pp. 3451–3460, 2021.

[12] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec
2.0: A framework for self-supervised learning of speech repre-
sentations,” Advances in neural information processing systems,
vol. 33, pp. 12 449–12 460, 2020.

[13] R. Lotfian and C. Busso, “Building naturalistic emotionally bal-
anced speech corpus by retrieving emotional speech from existing
podcast recordings,” IEEE Transactions on Affective Computing,
vol. 10, no. 4, pp. 471–483, 2017.

[14] K. Sridhar and C. Busso, “Unsupervised personalization of an
emotion recognition system: The unique properties of the exter-
nalization of valence in speech,” IEEE Transactions on Affective
Computing, vol. 13, no. 4, pp. 1959–1972, 2022.
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