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Abstract
Automatic voice pathology detection is promising for non-

invasive screening and early intervention using sound signals.
Nevertheless, existing methods are susceptible to covariate
shifts due to background noises, human voice variations, and
data selection biases leading to severe performance degrada-
tion in real-world scenarios. Hence, we propose a non-invasive
framework that contrastively learns personalization from sound
waves as a pre-train and predicts latent-spaced profile features
through semi-supervised learning. It allows all subjects from
various distributions (e.g., regionality, gender, age) to benefit
from personalized predictions for robust voice pathology in a
privacy-fulfilled manner. We extensively evaluate the frame-
work on four real-world respiratory illnesses datasets, includ-
ing Coswara, COUGHVID, ICBHI, and our private dataset
- ASound under multiple covariate shift settings (i.e., cross-
dataset), improving up to 4.12% in overall performance.
Index Terms: covariate shift, robust voice pathology detection

1. Introduction
The advent of sound and speech technology has opened many
new possibilities in voice pathology detection, such as chronic
diseases and infectious respiratory conditions (e.g., COVID-
19) [1, 2, 3]. Conventional methods for respiration monitoring,
such as thoracic impedance pneumography [4], or capnogra-
phy [5], are either too invasive or inconvenient. Recent studies
show the use of artificial intelligence (AI) based pathology de-
tection for cost-effective and non-invasive screening and moni-
toring of a wide spectrum of diseases. Nevertheless, such mod-
els are susceptible to reliability issues in real-world scenarios
as trained models tend to learn mixed characteristics linked to
personal information under various categories rather than down-
stream features, thereby leading to poor performance in action.
Figure 1 illustrates covariate shift in a cross-dataset validation
scenario, where a classification model is trained to achieve ac-
ceptable performances on one dataset (source) and then fails
when being tested on similar (target) datasets. Indeed, human
sounds have distinctive characteristics associated with disease-
related information which can be exploited as latent profile fea-
tures for better learning and reliability.

In this work, we propose an end-to-end AI-based Voice
Pathology Detection framework with two aims: (1) learning la-
tent profile characteristics in sound waves, and (2) maintaining
the robustness of AI systems due to the distribution shift is-
sue. A transformer-based model is pre-trained to learn person-
alized features through masked contrastive learning with nega-
tives sampled from other users. Then, this model is used to ex-
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Figure 1: Performance degradation due to covariate shift. A bi-
nary classification model is trained on one of the three datasets
(ASound, Coswara, or COUGHVID) or all three at once. We
observed that there is a huge performance gap (up to 32.44%)
when trained and tested in cross-dataset scenarios.

tract latent profile embedding for each subject based on all sam-
ples they provided. Additionally, the model can be self-trained
to enhance the embedding and support users with insufficient
samples, i.e., new patients. The profile embedding is used in
finetuning with a traditional classification model in an end-to-
end manner. Our proposed approach fulfills privacy compliance
by learning latent space features through anonymized sound
data without utilizing additional personal information.

Our main contributions are listed as follows:
• To our best knowledge, it is the first work to propose a per-

sonalization strategy within a unified deep-learning frame-
work to mitigate covariate shifts in the domain of sound data
without touching sensitive meta information.

• Introduce a novel personalized encoding method using each
data subject’s sound samples to build their profiles based on
pre-training with contrastive learning and can be applied to
all users through semi-supervised learning.

• Evaluate our methods with comprehensive experiments on
multiple real-world datasets, both publicly available, such
as Coswara, COUGHVID, ICBHI, and our private datasets,
namely ASound. The results demonstrate the efficacy of our
proposed framework.

• Source codes, reproducible baselines, and our new dataset
are made publicly available at https://github.com/
ReML-AI/RoPADet for future research and benchmarking
purposes.

2. Related Work
Covariate shift refers to possible changes in the distribution of
the input variables present in the training and the testing data

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1708 10.21437/Interspeech.2023-1332



- i.e., Ptrain(X, y) ̸= Ptest(X, y). The continuous nature of
sound data brings a variety of noisy aspects unique to each user,
such as intrinsic medical conditions, gender, and age, leading
to covariate shifts, especially when deployed to real-world set-
tings. Covariate shift is a reoccurring problem and it has been
studied in multiple works [6, 7, 8, 9] regarding the applicability
and efficacy of such models in real-world scenarios. However,
it is still an under-research problem in the sound domain.

Personalization is a well-established and complex topic,
with multiple applications, such as in personalized speech
recognition [10] or hate speech detection [11]. It also has a mul-
titude of medical applications [12]. A typical personalized ma-
chine learning method leverages additional cues, such as sen-
sitive metadata related to each user. Another direction utilize
additional samples of the same user as the user embedding.
For instance, in [13], the authors leveraged other samples of
the present user as pseudo-sources for emotion recognition or
speech enhancement. Perhaps the most related work to this re-
search is the work done by [14] in which they explore longi-
tudinal audio samples over time of each patient as time series
for COVID-19 progression prediction and recovery trend pre-
diction. To our best knowledge, we are the first to introduce a
personalization technique that enables learning latent charac-
teristics as a pre-train and predicting profile embeddings for un-
seen data towards robust sound classification.

3. Methodology
In this section, we describe our novel personalization frame-
work for sounds, named RoPADet, that leverages pre-training to
learn latent features for each individual directly from connected
sound signals and infer profile embeddings for unseen human
sounds through semi-supervised self-training. These embed-
dings capture individual respiratory-related characteristics and
disentangle them from illness-related features. With the profil-
ing mechanisms, covariate issues can be addressed, for exam-
ple, when audio samples are collected from different areas (e.g.,
in a different country), but can be useful for early detection in
other areas with personalization. In COVID-19, the intuition is
that yOmicron

EU = {yOmicron
Africa + predAfrica}− predEU , where

disentangled information learnt from one region can aid in early
prevention of the pandemic in another region. Therefore, our
framework is robust to covariate shift and privacy-preserving
without using sensitive data such as gender or maturity.

3.1. Latent profiling for personalization

We investigate profile information that captures each sub-
ject’s unique characteristics and base signals, regardless of the
downstream task. In order to train an effective profile extrac-
tor, masked contrastive learning is employed to predict masked
time step with distractors sampled from audios of other users.
This helps learn a discriminative model [15] that distinguishes
between users by their uniqueness.

Formally, define DP = (Xi, yi, ui) as the dataset of sam-
ples with profile labels ui (user identifier) and DNP = (Xj , yj)
as the dataset of samples with no profile labels. Xi is the sound
samples with label yi for downstream task T .

After the profile pre-training phase on D = DP ∪ DNP ,
we obtained a profile extractor fθprofile . We use it to generate
initial profiles for each user u in DP :

predu =
1

Nu
Σui=u

i fθprofile(Xi) (1)

Algorithm 1 RoPADet
Input:
D is dataset andW is the linear classifier head of RoPADet;
f : 1D-CNN+Transformer architecture of RoPADet
Output:
(θ∗feat, θ

∗
profile, θ

∗
W): final RoPADet

1: // Initialization
2: W ←− random initialization
3: θfeat, θprofile ←− random initialization
4: DP = (Xi, yi, ui),DNP = (Xj , yj) ←− select samples

with and without profile from D
5: // Pre-train with masked contrastive learning (MCL)
6: fθfeat ←− pre-train f on D with MCL
7: fθprofile ←− pre-train f on D with MCL where negatives

are sampled from everywhere
8: // Self-train
9: fθT ←− fθprofile

10: for all user u in DP do
11: Nu ←− number of samples belong to user u
12: predu ←− 1

Nu
Σui=u

i fθT (Xi)
13: end for
14: predTDP

←− predui ,∀Xi ∈ DP

15: for iter = 1 to MaxIter do
16: predTDNP

←− fθT (Xj),∀Xj ∈ DNP

17: // Train student
18: predSDP

←− fθS (Xi), ∀Xi ∈ DP

19: predSDNP
←− fθS (Xj),∀Xj ∈ DNP

20: LossS ←− mse-loss(predTDP
, predSDP

) + mse-
loss(predTDNP

, predSDNP
)

21: θS ←− θS − ηS ∗ ∇θSLossS
22: θT ←− θS // Update teacher
23: end for
24: // Update profile extractor
25: θ∗profile ←− θ∗S
26: predD ←− {predSDP

, predSDNP
}

27: // Fine-tune
28: labelD ←−W(fθfeat(D)⊕ predD)
29: Loss←− cross-entropy-loss(labelD, yD)
30: θfeat ←− θfeat − η ∗ ∇θfeatLoss
31: θW ←− θW − η ∗ ∇θWLoss
32: return (θ∗feat, θ

∗
profile, θ

∗
W)

where Nu is the total amount of samples belong to user u. Pro-
file predu will be used for all input Xi to the downstream task
where ui = u. Grouping and extracting profile features from
multiple samples of the same subject, invariant to the target task
labels are necessary to obtain features unique to each user.

However, naturally, most data samples fall into DNP , and
the above extracting scheme can not be applied effectively for
DNP , since each user provides only 1 sample, so the profile
extractor can not extract useful distilled profile information.

To enable learning with profile on DNP , we view this set-
ting as semi-supervised learning. Our main task for this self-
training pipeline is profile inference, where student learn to ex-
tract profile features provided by teacher model through a mean-
squared error loss. Motivated by STraTA [16], we first learn a
strong base model fθT through an auxiliary task (discriminative
masked contrastive learning) and then use it as the initial teacher
for self-training. This self-training process converges quickly,
in which the first or second iteration’s results typically yield the
best performances on downstream tasks for RoPADet.
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Figure 2: Model architectures. Our solution, RoPADet consists of a large pre-training and self-training with personalization, achieving
robust performances on respiratory sound illnesses detection tasks.

3.2. Downstream task training

To learn the downstream task T with the advantage of the per-
sonalized profile information, a downstream feature extractor
fθfeat is leveraged with profile features:

ŷi =W(fθfeat(Xi)⊕ predu), ui = u (2)

whereW denotes a linear classifier head and⊕ denotes the con-
catenate operation. fθprofile used to compute predu is obtained
from the previous pre-training and self-training stages and is
frozen in this stage. This is correspondence with RoPADet.

Finally, the model is trained in an end-to-end manner
through back-propagation via a cross-entropy loss function:

Loss =
∑

i

yi log(σ(ŷi)) + (1− yi) log(1− σ(ŷi)) (3)

Algorithm 1 describes the overall training pipeline. As
listed in Alogrithm 1, from line 5 to 7, we apply a pre-training
method that learns discriminative features between samples
through contrastive learning. The self-train stage is carried out
for learning pseudo profiles, as in line 8 to line 23. The pre-
trained or self-trained model, act as the profile extractor, has the
same architecture as the conventional model for downstream
task, excluding the downstream classification layers. We per-
form an average pooling operation on the features extracted
from samples provided for personalization and used this as the
profile feature. The profile feature is concatenated with the clas-
sification features before input to a downstream classifier, to
perform end-to-end training, demonstrated in line 28-31.

3.3. Model architecture

Following recent advancements, we adapt a transformer-based
model for downstream feature learning branch and neural pro-
file extractor of RoPADet, as depicted in Figure 2. Unlike prior
works that directly input raw waveform, a spectrum representa-
tion of waveform is extracted and fed into front-end 1-D tem-
poral CNN layers before input through the transformer encoder
blocks. Our method views each timestep that constitutes fre-
quency signals and nearby information as tokens for the self-
attention mechanism. While previous works input waveform, or

patches of spectrogram, ours is an efficient way of combining
these signals w.r.t the nature of sound data. Moreover, we can
leverage the masked pre-training task of transformers as auxil-
iary task for self-training.

Table 1: Performances when train on ASound-P (with profile
information) and test on ASound-P and ASound-NP (without
profile information).

Exp Method Profile-
learning

Profile-
inference

AUC on
ASound-P

AUC on
ASound-NP

#1 CNN-based ✗ ✗ 0.6783 0.3714

#2 Transformer
-based ✗ ✗ 0.8561 0.3822

#3 RoPADet ✓ ✗ 0.8693 0.3858
#4 RoPADet ✓ ✓ 0.8699 0.3964

Table 2: Performances of proposed methods on ICBHI dataset
(official 60-40 split). ↑ means higher number is better.

Exp Method Additional
training data

Persona-
lization ICBHI↑ Sens.↑ Spec.↑

#1 SoTA#1 [17] ✓ ✗ 57.3 30.0 85.6
#2 SoTA#2 [18] ✓ ✗ 57.55 39.15 75.95
#3 SoTA#3 [19] ✓ ✗ 58.29 37.24 79.34
#4 SoTA#4 [20] ✗ ✗ 53.90 36.36 71.44
#5 SoTA#5 [18] ✗ ✗ 54.74 33.84 75.35
#6 RoPADet ✗ ✓ 58.86 40.79 76.93

4. Results and Discussions
4.1. Datasets

We extensively conduct experiments on 3 real-world respira-
tory sound datasets: COUGHVID (n=7379) [21], Coswara
(n=4306) [22], and ICBHI (n=6898) [23]. Moreover, we col-
lected a crowdsourced dataset, named ASound (n=4495), for
respiratory illness detection recorded using mobile phones with-
out profile information. Motivated by reliability issues, we con-
ducted a second collection phase, in which if consent is given,
we assigned each participant a unique anonymized identifier for
personalization. Two additional variants are composed for pre-
training and self-training investigations: ASound-P includes
samples with profile information (n=570 by 117 users), and
ASound-NP without profile information (n=1651). We further
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Table 3: Performances when train on ASound, Coswara, and COUGHVID. Trained models are then evaluated on each in-domain or
out-domain test sets. We focus on a comparison between our proposed model with or without personalization. Here we denote results
with subscript L, M , and H as in the scenario where the effect of covariate shift is low, medium or high, consecutively. The notation ↑
indicates that a higher number is better, whereas ↓ indicates that a lower number is better.

Exp Train Dataset Method Test on ASound Test on Coswara Test on COUGHVID
AUC↑ Brier score↓ AUC↑ Brier score↓ AUC↑ Brier score↓

#1 ASound Transformer-based 0.9673 0.0420 0.7258 0.1722 0.5156 0.1215
#2 RoPADet 0.9687 0.0450 0.7386M 0.1631 0.5309H 0.1210
#3 Coswara Transformer-based 0.7619 0.1720 0.8081 0.1912 0.5031 0.2481
#4 RoPADet 0.7691L 0.1390 0.8102 0.1342 0.5015M 0.1726
#5 COUGHVID Transformer-based 0.4987 0.2819 0.6078 0.2414 0.6878 0.2049
#6 RoPADet 0.5157H 0.2804 0.6173H 0.2487 0.6835 0.2159

Table 4: Performances when train on ASound-P (obtained from experiments in Table 1), and then evaluate (AUC scores) on each sub-
group of users that contributed to ASound-NP. ♢ denotes profiles were only extracted by pre-trained based profile extractor.

Exp Method Age Group Variance between Gender Group Variance between
0− 18 ↑ 18− 23 ↑ 23− 28 ↑ 28− 33 ↑ 33− 100 ↑ Age groups↓ Male↑ Female↑ Gender groups↓

#1 Transformer-based 0.1724 0.3114 0.3537 0.3751 0.535 0.1165 0.4429 0.3736 0.0347
#2 RoPADet♢ 0.1776 0.3219 0.3982 0.3901 0.5217 0.1124 0.4295 03915 0.0190
#3 RoPADet 0.2086 0.364 0.4324 0.3641 0.5486 0.1104 0.4594 0.3767 0.0414

validate our personalization strategy on ICBHI as profile infor-
mation is provided (multiple sound samples per patient).

4.2. Setup

Evaluation metrics. Standard evaluation metrics such as pre-
cision, recall, F1, AUC are all reported for future benchmark-
ing purposes. Among these metrics, AUC score is our main
focused metric, to be consistent with previous works and for
evaluation on imbalanced datasets; ICBHI metric is used in
the ICBHI challenge (i.e., the average of the sensitivity and the
specificity); Brier score [24] is used to evaluate covariate shift
in cross-dataset scenarios.

Experimental settings. Our proposed framework is imple-
mented using fairseq [25]. All experiments are carried out on
an Ubuntu Server (20.04 LTS) with 2 RTX 3090 GPUs. For all
settings, we pre-trained our model on combined training sets.
For finetuning, models are trained for 100 epochs with AdamW
optimizer, a learning rate of 1e-4, and a batch size of 64. Un-
less otherwise specified, all scores are reported based on 5-fold
cross-validation (on ASound, Coswara, and COUGHVID) or
the average of 5 random seeds (on ICBHI).

4.3. Results

4.3.1. Performances with personalization

In this experiment, we evaluate the effectiveness of personal-
ization strategy through pre-training for profile learning and
self-training for profile inference on ASound-P (with pro-
file information) and ASound-NP (with no profile informa-
tion). Results in Table 1 indicate that while pre-trained pro-
file extractor improves performance on data with, but main-
tains same performance on data without sufficient profile la-
bels over Transformer-based model that share same architecture
but without personalization. When we apply semi-supervised
learning through self-training, we observe a large improve-
ment for ASound-NP, up to 2.5% over the baseline CNN.
This proves the usefulness of our proposed personalization ap-
proach through pre-training and self-training. Moreover, results
on ICBHI dataset demonstrated in Table 2 where RoPADet with
personalization advance the SoTA for solutions without addi-
tional training data by 4.12% in ICBHI score. It also achieved
a gap of 0.5% compared to solutions using extra training data,

without additional training data and fewer parameters. This also
shows the advantages of our framework.

4.3.2. Performances under covariate shift scenarios

Next, we compare models with or without personalization in
real-world scenarios where the profile information may not
be available. We first train a separate model for each dataset:
ASound, Coswara, and COUGHVID. Then, models are evalu-
ated on each test set of the 3 datasets. Results shown in Table 3
demonstrate consistent improvements in cross-dataset evalua-
tions, up to 1.7% in case of train on COUGHVID and then test
on ASound, as shown in Exp#5 and Exp#6.

4.3.3. Fair performance evaluation across sub-groups

To ensure fair classification for each sub-group, we evaluate
models on each sub-group of users that contributed samples
to ASound-NP. Sub-groups are constructed based on the user’s
age or gender. The results illustrated in Table 4 show that our
proposed personalization framework improves performances
across all sub-groups and allows for fair classification results
between groups with low variances.

5. Conclusion
In this study, we proposed RoPADet, a neural network personal-
ization approach with good improvements through pre-training
and self-training. We focused on the problem of covariate shift,
which is a significant problem leading to a detrimental perfor-
mance in AI systems. These consequences might decrease the
system’s trustworthiness and safety, especially in the healthcare
domain. Our personalization technique can be utilized for a va-
riety of patient-related healthcare tasks. It can be applied even if
the user is new to the system (i.e., no profile is provided), and as
the user continues to use the system, it becomes more adaptable
and reliable. Our approach not only helps improve the system’s
performance but also takes into account users’ safety and pri-
vacy and aids in gaining their belief. Extensive experiments on
various benchmark datasets and tasks from real-world settings
confirmed the effectiveness and generalizability of the proposed
approach. Future works may be interested in more advanced
methods for fusing user profiles and classification features or in
weighting user samples, such as exploiting temporal orders.
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Joint learning target and emotion for hate speech detection,” in
PAKDD. Springer, 2021, pp. 701–713.

[12] T. Golany and K. Radinsky, “PGANs: Personalized generative ad-
versarial networks for ecg synthesis to improve patient-specific
deep ecg classification,” AAAI, vol. 33, no. 01, pp. 557–564, Jul.
2019.

[13] A. Sivaraman, S. Kim, and M. Kim, “Personalized Speech En-
hancement Through Self-Supervised Data Augmentation and Pu-
rification,” in Proc. Interspeech 2021, 2021, pp. 2676–2680.

[14] T. Dang, J. Han, T. Xia et al., “Exploring Longitudinal Cough,
Breath, and Voice Data for COVID-19 Disease Progression Pre-
diction via Sequential Deep Learning: Model Development and
Validation,” Journal of Medical Internet Research, vol. 24, 02
2022.

[15] S. Liu, A. Mallol-Ragolta, E. Parada-Cabaleiro, K. Qian, X. Jing,
A. Kathan, B. Hu, and B. W. Schuller, “Audio self-supervised
learning: A survey,” Patterns, vol. 3, no. 12, p. 100616, 2022.

[16] T. Vu, M.-T. Luong, Q. Le, G. Simon, and M. Iyyer, “STraTA:
Self-training with task augmentation for better few-shot learning,”
in Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. Online and Punta Cana, Domini-
can Republic: Association for Computational Linguistics, Nov.
2021, pp. 5715–5731.

[17] L. Pham, D. Ngo, K. Tran, T. Hoang, A. Schindler, and
I. McLoughlin, “An Ensemble of Deep Learning Frameworks for
Predicting Respiratory Anomalies,” in 2022 44th Annual Interna-
tional Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC), 2022, pp. 4595–4598.

[18] I. Moummad and N. Farrugia, “Supervised Contrastive Learn-
ing for Respiratory Sound Classification,” arXiv preprint
arXiv:2210.16192, 2022.

[19] T. Nguyen and F. Pernkopf, “Lung sound classification using
co-tuning and stochastic normalization,” IEEE Transactions on
Biomedical Engineering, vol. 69, no. 9, pp. 2872–2882, 2022.

[20] J. Li, J. Yuan, H. Wang, S. Liu, Q. Guo, Y. Ma, Y. Li, L. Zhao,
and G. Wang, “LungAttn: advanced lung sound classification us-
ing attention mechanism with dual TQWT and triple STFT spec-
trogram,” Physiological Measurement, vol. 42, no. 10, p. 105006,
oct 2021.

[21] L. Orlandic, T. Teijeiro, and D. Atienza, “The COUGHVID
crowdsourcing dataset, a corpus for the study of large-scale cough
analysis algorithms,” Scientific Data, vol. 8, no. 1, Jun. 2021.

[22] N. Sharma, P. Krishnan, R. Kumar, S. Ramoji, S. R. Chetupalli,
N. R., P. K. Ghosh, and S. Ganapathy, “Coswara — A Database of
Breathing, Cough, and Voice Sounds for COVID-19 Diagnosis,”
in Proc. Interspeech 2020, 2020, pp. 4811–4815.

[23] B. M. Rocha, D. Filos, L. Mendes, G. Serbes, S. Ulukaya, Y. P.
Kahya, N. Jakovljevic, T. L. Turukalo, I. M. Vogiatzis, E. Peran-
toni, E. Kaimakamis, P. Natsiavas, A. Oliveira, C. Jácome,
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