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Abstract
Automatic speech recognition (ASR) based on transducers is
widely used. In training, a transducer maximizes the summed
posteriors of all paths. The path with the highest posterior
is commonly defined as the predicted alignment between the
speech and the transcription. While the vanilla transducer does
not have a prior preference for any of the valid paths, this work
intends to enforce the preferred paths and achieve controllable
alignment prediction. Specifically, this work proposes Bayes
Risk Transducer (BRT), which uses a Bayes risk function to set
lower risk values to the preferred paths so that the predicted
alignment is more likely to satisfy specific desired properties.
We further demonstrate that these predicted alignments with in-
tentionally designed properties can provide practical advantages
over the vanilla transducer. Experimentally, the proposed BRT
saves inference cost by up to 46% for non-streaming ASR and
reduces overall system latency by 41% for streaming ASR.1 2

Index Terms: speech recognition, transducer, alignment

1. Introduction
Automatic speech recognition (ASR) based on transducers [1]
is one of the most popular frameworks [2, 3, 4]. In the past
few years, a series of approaches have been proposed as exten-
sions of the transducer with the goals of optimizing its recogni-
tion accuracy [5, 6], language model integration [7], flexibility
[8], decoding efficiency [9] and simplicity [10, 11], memory
efficiency during training [12, 13, 14] and overall system la-
tency during streaming decoding [15, 16, 17, 18, 19, 20]. Dur-
ing training, the vanilla transducer, as well as its extensions
[9, 12, 13, 15, 16, 17, 20], maximizes the summed posterior
of all potential aligning sequences (a.k.a, paths) between the
speech and the transcription. In particular, these extensions
achieve their goals by manipulating the transducer paths, such
as allowing multi-frame big skips [9], pruning paths with minor
posteriors with [13, 17, 20] or without [12] reference alignment
labels, discouraging blank emissions [15] and encouraging non-
blank emissions [16]. This work provides another extension of
the transducer, which also conducts manipulation over paths.
Specifically, as a follow-up of the previous work [21] which
attempts to achieve controllable alignment prediction in CTC
criterion [22], this work extends this controllability to the trans-
ducer model by taking its distinctive forward-backward process
into consideration.

The alignment prediction of the transducer is commonly de-
fined as the path with the highest posterior. In vanilla trans-
ducer formulation, there is no prior preference among the paths
since predicting each valid path will yield the correct textual
transcription. Currently, the alignment selection among the
paths (i.e., which path will become the predicted alignment) can

1We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the GPUs used for this research.

2Code available: https://github.com/espnet/espnet

hardly be affected by human intervention during training. To
achieve controllable alignment prediction in the transducer is
exactly to intentionally choose paths with specific desired prop-
erties as the alignment prediction. With this motivation, this
work proposes an extension of the transducer called Bayes Risk
Transducer (BRT), which adopts a Bayes risk function to inten-
tionally enforce a preference for paths with the desired proper-
ties, so that the predicted alignments are more likely to be char-
acterized by these properties. Particularly, the original forward-
backward algorithm of the transducer is revised into a divide-
and-conquer approach: all paths are firstly divided into multiple
exclusive groups and the groups with more favored properties
are enforced by receiving lower risk values than the others.

This work further demonstrates that BRT with control-
lable alignment prediction has practical advantages over vanilla
transducers. By designing various Bayes risk functions, we can
obtain alignment predictions with desired properties that are
specific to different task setups, which subsequently helps to
offer novel solutions for two practical challenges in ASR: infer-
ence cost for non-streaming ASR and overall system latency for
streaming ASR. In the non-streaming setup, a Bayes risk func-
tion is designed to enforce the paths that emit the last non-blank
predictions earlier. As a benefit, the last non-blank prediction
occurs at an early time stamp so the inference cost can be re-
duced by terminating the decoding loop early without exploring
all frames. In the streaming setup, another Bayes risk function
is designed to encourage early emissions for all non-blank to-
kens. Thus, the model emits before waiting too long context
and the latency for each non-blank token is reduced. Experi-
mentally, the former case accelerates non-streaming inference
by up to 46% and the latter case reduces the overall system la-
tency of streaming ASR system by 41%.

2. Bayes Risk Transducer
2.1. Vanilla Transducer
In training, vanilla transducer maximizes the posterior of the
transcription l = [l1, ..., lU ] with the given acoustic feature se-
quence x = [x1, ...,xT ]. Instead of maximizing P (l|x) di-
rectly, the transducer maximizes the summed posterior of all
paths in the transducer lattice (see Fig.1.a). Note ∅ as the blank
symbol and extend the vocabulary V̂ = V ∪ {∅}, each symbol
sequence π = [π1, ..., πT+U ] is a valid path if all entries of π
are in V̂ and B(π) = l. Here B is a mapping that removes all ∅.
So the vanilla transducer objective to minimize is defined as:
Jtransducer(l,x) ≜ − logP (l|x) = − log

∑

π∈B−1(l)

P (π|x) (1)

where B−1(l) is the set of all valid paths. Next, the posterior of
each path P (π|x) is computed as:

P (π|x) =
T+U∏

i=1

p(πi|x1:t, l1:u) (2)

where the condition (x1:t, l1:u) specifies the node (t, u) on
the transducer lattice s.t. B(π1:i) = l1:u and t + u =
i − 1. Instead of enumerating all paths and summing their
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(a) Transducer Lattice (b) log G(t, u) - Vanilla Transducer (c) log G(t, u) - BRT
Figure 1: (a): Transducer lattice. G(4, 2) is the summed posterior of all paths that go through the vertical arrow (in green) from node
(4, 1) to node (4, 2) and emit 2nd token at the 4th frame. The red path ends all non-blank predictions at τ = 3 while the blue path ends
at τ = 6. The red path is preferred in Sec.3.2. (b) & (c): The heat maps for log G(t, u).
posteriors, the transducer objective is computed efficiently by
forward-backward algorithm [23], which recursively computes
the forward-backward variables α(t, u) and β(t, u) for each
node (t, u) in the transducer lattice:

α(t, u) =
∑

π∈V′(T+U),B(π1:t+u)=l1:u

P (π|x) (3)

β(t, u) =
∑

π∈V′(T+U),B(πt+u+1:T+U )=lu+1:U

P (π|x) (4)

Subsequently, by decomposing each path π into partial paths
π1:t+u and πt+u+1:T+U and using Eq.{3, 4}, the transducer
objective is derived as3:

Jtransducer(l,x) = − log
∑

π∈B−1(l)

P (π|x)

=− log
∑

(t,u):t+u=n

∑

B(π1:t+u)=l1:u
B(πt+u+1:T+U )=lu+1:U

P (π|x)

=− log
∑

(t,u):t+u=n

α(t, u) · β(t, u) (5)

where n is any known integer s.t. n ∈ [0, T + U ]. Fi-
nally, the path with the highest posterior is usually consid-
ered as the alignment prediction between x and l: ali(x, l) =
argmaxπ∈B−1(l) P (π|x).
2.2. Bayes Risk Transducer
As suggested in Eq.1, the formulation of the vanilla transducer
has no prior preference among paths. This work intentionally
selects the predicted alignment among the paths and thus at-
tempts to achieve controllable alignment prediction. With this
motivation, this work proposes Bayes Risk Transducer (BRT),
which adopts a customizable Bayes risk function to express the
preference for specific paths with desired properties. To pre-
serve a similar format like Eq.1, we sets the risk function for
each path as −r(π) so that minimizing the expected risk is
equivalent to minimizing the BRT objective 4:

JBRT(l,x) ≜ − log
∑

π∈B−1(l)

[P (π|x) · r(π)] (6)

The computation of the proposed BRT objective still adopts
the forward-backward variables and works in a divide-and-
conquer approach. To express the preference for specific prop-
erty of the paths, the Bayes risk function specifies 1) what prop-

3Note, for a path that go through a known node (t, u) in trans-
ducer lattice, the partial path πt+u+1:T+U is independent to partial
path π1:t+u so that the factorization of the path posterior is P (π|x) =
P (π1:t+u|x) · P (πt+u+1:T+U |���π1:t+u,x).

4In the remained part of this work, r(π) is termed as the Bayes risk
function even though the real Bayes risk function is −r(π). Higher
r(π) value represents a lower risk, a.k.a., preference.

erty is concerned and 2) what values of the concerned property
are preferred. To answer these questions, the concerned prop-
erty of each path is defined by f(π). Then, all paths are divided
into multiple exclusive groups s.t. paths with the identical con-
cerned property value τ are in the same groups. For paths in one
identical group, it is reasonable to assign the same risk value
as the concerned property is the same. Thus, the Bayes risk
function r(π) is replaced by a group-level risk function rg(τ),
which only depends on the group-level concerned property τ
rather than the path π. Formally, this process is written as:

JBRT(l,x) = − log
∑

τ

∑

π∈B−1(l),f(π)=τ

[P (π|x) · r(π)]

= − log
∑

τ

∑

π∈B−1(l),f(π)=τ

[P (π|x) · rg(τ)]

= − log
∑

τ

[rg(τ) ·
∑

π∈B−1(l),f(π)=τ

P (π|x)] (7)

Please be aware of: 1) when splitting the path into groups,
the groups are supposed to be mutually exclusive so that each
path is considered once and only once; 2) by adopting the
group-level risk function, we can avoid the complex weighted
summation over all paths within each group. 3) the summed
posterior of each path group should be fully tractable by the
forward-backward variables so the computation remains effi-
cient; 4) by pursuing the desired properties in the predicted
alignment between x and l during training, these properties are
expected to be preserved in the predicted alignments between
the test speech and the textual hypotheses during decoding.

Provided the general formulation of BRT in Eq.7, a naive
example is in Eq.5, where the concerned property τ represents
the pair (t, u) and rg(τ) = 1. Under this setting, the vanilla
transducer is a special case of the proposed BRT. Alternatively,
given the u-th non-blank token lu in the transcription, another
useful example is to set the concerned property τ as the time
stamp when lu is emitted, a.k.a, πτ+u = lu. With a similar
factorization like Eq.5 and considering Eq.{2, 3, 4}, the BRT
objective is further revised as:

JBRT(l,x, u) = − log
∑

τ

[rg(τ) ·
∑

π∈B−1(l),πτ+u=lu

P (π|x)]

= − log
∑

τ

[rg(τ) ·
∑

B(π1:τ+u−1)=l1:u−1
πτ+u=lu

B(πτ+u+1:T+U )=lu+1:U

P (π|x)]

= − log
∑

τ

rg(τ) · [α(τ, u− 1) · p(lu|x1:τ , l1:u−1) · β(τ, u)]︸ ︷︷ ︸
≜ G(τ,u)

(8)
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(a) WER / CER%
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(b) Decoding Frames (DF)
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(c) Real Time Factor (RTF)

Figure 2: Results of non-streaming ASR. (a) Recognition accuracy in CER / WER %; (b) Average decoding frames (DF); (c) Real time
factor (RTF). With comparable recognition accuracy, the proposed BRT achieve more efficient decoding by decoding fewer frames.

Here is G(τ, u) the summed posterior of all paths that go
through the vertical arrow from node (τ, u− 1) to node (τ, u).
Fig.1.a gives a demonstration of G(τ, u) in the lattice and
Fig.1.{b, c} provides numerical examples of G(τ, u). G(τ, u)
measures the summed probability of all valid paths that lu is
emitted at τ -th frame, which indicates the alignment prediction.
So far the group-level risk function rg(τ) is not defined. Below
we show two applications of Eq.8 with different rg(τ) designs.

2.3. Non-streaming Application: Efficient Decoding
For frame-synchronized decoding algorithms of the transducer
[1, 24], the inference cost highly depends on T as the decod-
ing loop is conducted frame-by-frame. In Fig.1.b, the whole
sequence l cannot be predicted until all frames are explored.
By contrast, in Fig.1.c, all non-blank tokens are emitted before
reaching the red line, which allows us to stop decoding at an
early time stamp (e.g., the red line) to save computation.

To achieve the heat map like Fig.1.c, the concerned property
is exactly the time stamp τ when the last token lU , as well as
the whole sequence, is emitted: πτ+U = lU . In addition, paths
with smaller τ are preferred (see Fig.1.a) since fewer frames
are consumed to predict all tokens. Set u = U in Eq.8, the
objective to minimize is:
JBRT(l,x, U) = − log

∑

τ

min(e−λ·(τ−m·U)/T , 1) · G(τ, U)

(9)
where the risk function rg(τ) = min(e−λ·(τ−m·U)/T , 1) ex-
presses the preference for τ ∈ [1,m · U ] and shows exponen-
tially decayed interest in τ > m · U 5. λ and m are hyper-
parameters. m is empirically set to 2 and λ varies according to
datasets.

This work further provides an early-stop mechanism to re-
duce the number of decoding frames of BRT. First, assume we
obtain a hypothesis l̂ = [l̂1, ..., l̂u] at τ -th frame during de-
coding. The hypothesis is considered complete if no additional
non-blank tokens are expected to be emitted in the search pro-
cess over the remaining frames after τ . In other words, for any
possible path of the complete l̂, its sub-path after the τ -th frame
only consists of continuous ∅ (see the blue line in Fig.1.c). So
l̂ is considered complete only if the accumulated probability of
the continuous ∅ since the τ -th frame are with high confidence:∑T

t=τ log p(∅|x1:t, l̂1:u) > D, where D = −10 is a thresh-
old value6. Secondly, for a search beam that contains multiple
hypotheses, we terminate the search when 1) the top k = 3
blank-free hypotheses do not change for f = 5 frames and 2)
all top k = 3 hypotheses are considered complete.

5We do not express an extra preference for very small τ so it is less
likely that multiple non-blank tokens are emitted at a single frame.

6The computation for this condition cannot be considered as a search
over the frames after τ since the series {p(∅|x1:t, l̂1:u)} can be com-
puted in parallel fashion and requires no loop.

2.4. Streaming Application: Early Emission
A streaming ASR system is expected to emit each token accu-
rately and timely. The accuracy and latency, however, usually
form a trade-off: better recognition accuracy requires longer
context, which results in higher latency. For streaming ASR,
BRT is designed to encourage all tokens to emit at early time
stamps, even at the cost of slight performance degradation. By
doing so, BRT achieves a better accuracy-latency trade-off than
the vanilla transducer, which is further demonstrated in Sec.3.3.

The vanilla transducer only attempts to transcribe the
speech correctly but poses no constraint on when tokens would
be emitted. By contrast, the proposed BRT can reduce the la-
tency by enforcing the paths that emit each token at a smaller
time stamp. Formally, with any non-blank token lu and the
exponentially decayed risk function rg(τ) = e−λ·(τ−τ ′)/T , a
BRT objective is derived from Eq.8 with the goal of encourag-
ing lu to be emitted earlier:

JBRT(l,x, u) = − log
∑

τ

e−λ·(τ−τ ′)/T · G(τ, u) (10)

where τ is the concerned property that specifies the time-
stamp when lu is emitted and is enforced to be smaller; τ ′ =
argmaxτ G(τ, u) is a bias term to ensure that the path group
with the highest summed posterior G(τ, u) would always re-
ceive the risk value of rg(τ) = 1 so that the absolute value
of JBRT(l,x, u) does not vary along with u significantly. Here
λ is still an adjustable hyper-parameter varying with datasets.
Subsequently, to guide every token lu to be emitted earlier re-
quires the consideration of all tokens. So we simply attempts to
minimize the mean of JBRT(l,x, u) in Eq.10 over every u:

J(l,x) =
1

U
·

U∑

u=1

JBRT(l,x, u) (11)

3. Experiments
3.1. Experimental Setup
Datasets: Experiments are conducted on Aishell-1 [25],
Aishell-2 [26] and Librispeech-100 [27] datasets. The volumes
of these datasets range from 100 hours to 1k hours. Librispeech-
100 is in English and the others are in Mandarin. All data is
augmented by SpecAugment [28] and speed perturbation. For
English, tokens are 500 BPE units.
Evaluation Metrics: CER / WER% is adopted to show the
recognition accuracy. To compare the decoding efficiency of
non-streaming ASR, the average number of decoding frames
(DF) before the decoding termination and the real-time factor
(RTF) over CPU7 are reported. For streaming ASR, the overall
latency is defined as the sum of data collecting latency (DCL)
and drift latency (DL) [21]8. DCL is the time to wait before the

7Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz, single thread.
8The latency caused by computation is not considered in this work:

it is marginal for a light model and without an external language model.
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(a) Demonstration of drift latency
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(c) Aishell-2
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(d) Librispeech-100
Figure 3: Results of streaming ASR. (a) A demonstration of drift latency (DL). Blue arrows stand for the reference duration of each
token. The alignment of the hypothesis is represented by the red path. Token l2 starts at 1st frame but is predicted at 4th frame, which
is a 3-frame drift latency. (b) & (c) & (d): the accuracy-latency trade-off achieved with varying data collecting latency (DCL)

.

input speech forms a chunk (a.k.a., the latency caused by chunk
size and look-ahead length). DL is exemplified in Fig.3.a. and
its reference9 is obtained by standard GMM-HMM systems10.
Features & Models: 80-dim Fbank features with the window
size of 10ms are down-sampled by 4x using CNN before being
fed into the encoder. The acoustic encoder is Conformer [29]
for non-streaming ASR and Emformer [30] for streaming ASR.
For streaming ASR, DCL is set to {160, 320, 480, 640}ms. The
prediction network is a standard LSTM and the joint network is
linear. For English tasks, an auxiliary CTC criterion is adopted
on the top of the encoder to stabilize the training. Model sizes
for non-streaming and streaming experiments are 95M and 57M
respectively.
Training & Decoding: For {Aishell-1, Aishell-2, Librispeech-
100}, models are trained for {100, 100, 300} epochs with λ of
{5, 5, 20} and {10, 10, 50} for non-streaming and streaming
ASR respectively. The original decoding algorithm proposed in
[1] is adopted with a beam size of 10. No language model is
adopted in decoding.

3.2. Results on non-streaming ASR
This part evaluates the effectiveness of the proposed BRT
method on non-streaming ASR. Our results are shown in Fig.2.
Firstly, as shown in Fig.2.a, with datasets in varying scales and
languages, the recognition accuracy achieved by the proposed
BRT method and the vanilla transducer are comparable. Sec-
ondly, Fig.2.b demonstrates the effectiveness of the proposed
BRT in reducing the decoding frames. E.g., by introducing the
BRT criterion, the DF for Aishell-2 dataset is reduced from 71
to 16, which is a 77% reduction. Finally, for models trained by
BRT, the overall inference cost (a.k.a., RTF) is reduced since the
proposed early-stop mechanism allows the model not to explore
all the frames. By adopting the BRT criterion and the early-stop
mechanism, the RTF of Aishell-1 is reduced from 0.25 to 0.14,
which is a 46% relative reduction. The reduction in Fig.2.c is
not as considerable as that in Fig.2.b since the encoder inference
accounts for a large part of the computation cost.

3.3. Results on streaming ASR
This part evaluates the effectiveness of the proposed BRT
method on streaming ASR. Our results are shown in Fig.3. As
discussed in Sec.2.4, the streaming ASR has a trade-off be-
tween the recognition accuracy and the overall system latency.
As shown in Fig.3.{b,c,d}, on the three datasets, the curve of
the proposed BRT (the red one) consistently lies in the lower-
left direction of its baseline (vanilla transducer, the blue one),
which suggested that the proposed BRT criterion achieves better

9For an English word that consists of multiple BPE tokens, we only
count the last BPE unit of that word.

10Models are trained by Kaldi: https://github.com/kaldi-asr/kaldi

accuracy-latency trade-off than vanilla transducer. In addition,
BRT can build systems with extremely low latency that cannot
be achieved by the vanilla transducer, even at the cost of recog-
nition performance degradation. E.g., on the Aishell-2 dataset,
the lowest overall latency achieved by the vanilla transducer and
BRT is 430ms and 251ms respectively, which is a 41% relative
reduction in latency, even with accuracy degradation.

Further ablation study is conducted on Aishell-1 dataset.
As shown in Fig.4.a, the transducer system with extremely
low latency cannot be built by simply reducing the chunk size
(a.k.a., small DCL) since the model is allowed to wait for very
long context before emitting (a.k.a., larger DL). In addition,
the adoption of BRT can effectively reduce the DL, which is
aligned with our motivation in Sec.2.411. The BRT model has
this strength of early emission since the paths that emit non-
blank prediction earlier are enforced during training. Next,
Fig.4.b shows that the vanilla transducer outperforms the pro-
posed BRT in accuracy with all DCL settings, which is rea-
sonable since the accessible right context is reduced if the non-
blank tokens are emitted earlier. Combining Fig.4.{a,b} will
reach Fig.3.b, which demonstrates that: BRT provides an alter-
native solution for streaming transducer, i.e., increasing DCL
with a larger chunk size and reducing DL by using BRT to
meet the latency budget so that a better overall accuracy-latency
trade-off is achieved.
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(a) DCL vs. DL
� 	������ ���

�
�


�
���
�


��
�
�


���������
��
�������

(b) DCL vs. CER
Figure 4: Ablation study for streaming ASR (on Aishell-1)

4. Conclusion
To achieve controllable alignment prediction in the transducer,
this work proposes an extension of the transducer called Bayes
Risk Transducer (BRT), which adopts a Bayes risk function to
enforce specific paths with the desired properties. By design-
ing different Bayes risk functions, the predicted alignment is
enriched with task-specific properties, which provides practical
benefits besides recognizing the speech accurately: efficient de-
coding for non-streaming ASR and early emission for stream-
ing ASR. The claimed two applications are experimentally val-
idated on multiple datasets and in multiple languages.

11The DL can be negative due to the look-ahead of the model
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[24] G. Saon, Z. Tüske, and K. Audhkhasi, “Alignment-length syn-
chronous decoding for rnn transducer,” in ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2020, pp. 7804–7808.

[25] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “Aishell-1: An open-
source mandarin speech corpus and a speech recognition base-
line,” in 2017 20th Conference of the Oriental Chapter of the
International Coordinating Committee on Speech Databases and
Speech I/O Systems and Assessment (O-COCOSDA), 2017, pp.
1–5.

[26] J. Du, X. Na, X. Liu, and H. Bu, “Aishell-2: Transform-
ing mandarin asr research into industrial scale,” arXiv preprint
arXiv:1808.10583, 2018.

[27] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206–5210.

[28] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “SpecAugment: A Simple Data Augmentation
Method for Automatic Speech Recognition,” in Proc. Interspeech
2019, 2019, pp. 2613–2617.

[29] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition,” in
Proc. Interspeech 2020, 2020, pp. 5036–5040.

[30] Y. Shi, Y. Wang, C. Wu, C.-F. Yeh, J. Chan, F. Zhang, D. Le,
and M. Seltzer, “Emformer: Efficient memory transformer based
acoustic model for low latency streaming speech recognition,” in
ICASSP 2021 - 2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2021, pp. 6783–
6787.

4972


