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Abstract
Advanced end-to-end ASR systems encode speech signals

by means of a multi-layer network architecture. In Wav2vec2.0,
for example, a CNN is used as feature encoder on top of which
transformer layers are used to map the high-dimensional CNN
representations to the elements of some lexicon. Compared to
the previous generation of ’modular’ ASR systems it is much
more difficult to interpret the processing and representations in
an end-to-end system from a phonetic point of view. We built a
Wav2vec2.0-based end-to-end system for producing broad pho-
netic transcriptions of Dutch. In this paper we investigate to
what extent the CNN features and the representations on sev-
eral transformer layers of a pre-trained and fine-tuned model
reflect widely-shared phonetic knowledge. For that purpose we
analyze distances between phones and the phonetic features of
the most-activated phones in the output of an MLP classifier
operating on the representations in several layers.
Keywords: computational models, end-to-end audio decoding,
broad phonetic classes, scientific understanding

1. Introduction
The recent emergence of so-called end-to-end systems (E2E),
such as Wav2Vec 2.0 [1] (henceforth Wav2vec2), has revolu-
tionized automatic speech recognition (ASR) in many ways. At
the same time many researchers whose interest is not primarily
to obtain the lowest possible transcription error rate are asking
whether the representations on some or all layers of E2E mod-
els contain information that can be harnessed for other down-
stream tasks [2, 3, 4]. These approaches are collectively known
as probing. In this paper we use a probing approach to inves-
tigate to what extent the latent representations on the layers of
a Wav2vec2 model capture generally accepted phonetic knowl-
edge, such as the fact that phones that are members of the same
broad phonetic class (BPC) [5] are closer to each other than to
phones that belong to a different BPC. This question differs fun-
damentally from asking if those representations can be used for
phone classification.

ASR systems have long taken inspiration from models of
human speech recognition and informed these in turn (e.g.,
[6, 7]). The relation between E2E-based ASR-systems and
models of human speech recognition is less straightforward.
An important concept within models of human speech recog-
nition is the idea of competition (cf. [8] and references therein),
which has both a temporal and a categorical (i.e. phonemes)
dimension. Interestingly, competition in both dimensions is al-
most completely obscured in the discrete symbolic output of a
Wav2vec2 model. In the current study, we focus on the role of
competition on the categorical dimension in a Wav2vec2 model.
We do so by using the information in the latent representations

on the hidden layers of a Wav2vec2 model.
Many probing approaches take the representations on some

layer of a deep neural network (DNN) as the data with which
some classifier is trained for some specific task, such as pho-
netic feature extraction of phone classification. Previous re-
search such as [2, 3, 4, 9] mainly focused on identifying the
layer whose representations yielded the best classification per-
formance. These studies show that phone classification is pos-
sible with convincing performance. However, their approach
does not provide insight in the structure of the latent represen-
tations in terms of phonetic knowledge. Specifically, they do
not provide insight in the competition between phones, a con-
cept that plays an important role in models of human auditory
word comprehension ([6, 10]) and in the classical cohort models
([11]). In this paper we develop probing methods that should do
just that: highlight exactly how of phonetic information is struc-
tured in the latent representations, and how this structure may
change when advancing from the lowest to the highest hidden
layer.

In this study, we use an E2E model that is finetuned for
broad phonetic transcription for Dutch. It has been shown that
Wav2vec2 models can produce high-quality transcriptions on
the phone level; [12] reports a phone error rate of 8.3% for the
TIMIT test set. However, the final output of a Wav2vec2 model
does not show how confusable phones compete for some of the
probability mass. Typically, due to the CTC algorithm [13],
the score distance between the winner and all competitors is
very large, and the rank order of the competing phones may be
seemingly random, which makes a Wav2vec2 model fine-tuned
with CTC a good phone decision machine, but a poor machine
when it comes to describing phonetic structure.

The probing techniques investigated in this paper aim to
investigate the competition between phones in individual time
frames. Phonetic theory predicts at least global aspects of
the statistical distributions of the distances between different
phones. The degree to which representations on specific lay-
ers of a Wav2vec2 system reflect that theory should shed light
on the acoustic-phonetic structure captured in those represen-
tations. In the current study, we focus on the role of phone
competition in an E2E model by investigating three related as-
pects: the Kullback-Leibler divergence between phone pairs,
the within-frame phone ambiguity, and the interpretation of the
competition between winning and runner-up phone in E2E in
terms of ’classical’ phonetic structure.

2. Searching for acoustic-phonetic structure
In order to obtain a first impression of how acoustic phonetic
structure is covered in the representations on the hidden lay-
ers in a Wav2vec2 system, we decoded all utterances in the
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Figure 1: KL distance between phone pairs. Left: CNN output layer; center: transformer layer 12; right: transformer layer 24.

news broadcast component (component ’k’) from the Spoken
Dutch Corpus [14] (∼ 27 hours of materials) with a properly
fine-tuned system. This system was finetuned towards the clas-
sification of 37 phones in Dutch. In doing so, we stored the
1024-D representations on all hidden layers for all utterances.
In addition, we stored the 512-D CNN representations, which
are as close as we can come to the speech signals. We then
used KMeans clustering to create codebooks with 512 entries,
and replaced the 512-D or 1024-D frame vectors with the num-
ber of the closest code word (using Euclidean distance). For
each of the 37 phone labels we constructed a histogram of
the resulting code word counts from which we obtained 512-
D vectors that describe p(qN |phone). Finally, we computed
the Kullback-Leibler (KL) divergence (Eq. 1) between all pairs
of phone probability vectors.

KL(P ||Q) = −
∑

x

P (x) log(
Q(x)

P (x)
) (1)

Figure 1 shows the (non-symmetric) KL divergence for all
phone pairs for the representations on the CNN output layer
and layers nr 12 and 24 in the transformer. It can be seen that
on the CNN layer there is some evidence of acoustic-phonetic
structure, but on the (higher) transformer layers that structure is
much less apparent. Importantly, this does not mean that those
representations contain weaker phonetic information. After all,
[2, 3, 4] have shown that classifiers that use these representa-
tions for a range of downstream tasks outperform the results
of similar classifiers that operate on conventional spectral rep-
resentations. The figure shows that the acoustic organisation
in the higher transformer layers differs from the lowest trans-
former layer, in line with the findings in the next sections.

3. Multi-layer perceptron phone classifiers
In our second method we trained MLP-based phone classifiers
similar to the approach reported in other probing papers (e.g.
[3]). First, we used both a pre-trained Wav2vec2 model with-
out any fine-tuning, and a fine-tuned model trained on the core
part of the read aloud books component (component o) in the
Spoken Dutch Corpus [14]. For fine-tuning we used the manu-
ally corrected phonetic transcriptions and corresponding audio
recordings (∼7 hours of materials). Subsequently, we applied
both the pre-trained and fine-tuned model on the complete set
of read aloud book recordings (∼ 64 hours of materials).

Based on the latent representations of both models, we
trained for each layer a specific MLP phone classifier with the

latent representation as input and the phone label from the fine-
tuned Wav2vec2 model output as ground truth. We trained these
classifiers only on those frames with a phone label in the output
of the fine-tuned Wav2vec2 model. Table 1 presents the phone
classification accuracy for a subset of the resulting MLP phone
classifiers on an independent held out test set from component
’o’ in the Spoken Dutch Corpus ([14]) (the other classifiers ob-
tained similar results – all details are available on github). Ta-
ble 1 serves as a sanity check for the MLPs used in follow-
up experiments reported in the next sections. It shows that,
globally, the accuracy increases with layer, in line with pre-
vious research. Interestingly, this does not only hold for the
phone-based finetuned model but also for the original pretrained
model. One observes relatively large differences between CTC-
finetuned and pretrained model and the interaction with layer.

Table 1: Classification accuracy of the MLP phone classifiers
on a held-out test set in the Spoken Dutch Corpus [14].

Layer Pretrained CTC

cnn 69 %
1 84 % 83 %

12 92 % 94 %
24 94 % 98 %

4. Competition probing: KL-divergence
with broad phonetic class distributions

Phonetic theory holds that phones within a Broad Phonetic
Class (BPC) [5] are more alike compared to phones from a
different BPC (e.g., /p/ is similar to /k/ but not to /a/). To in-
vestigate whether the representational structure of the hidden
layers of the Wav2vec2 model respects the phonetic structure
along BPCs we applied the Kullback-Leibler (KL) divergence
as a dissimilarity measure between an observed PDF (generated
by the MLP phone classifier) and a ’synthetic’ phone PDF di-
rectly based on BPCs. Lower KL-divergence entails that the
MLP-based PDF well matches the BPC-based PDF and that the
underlying Wav2vec2 hidden state is in line with a categorical
competition as in [5]. Conversely, higher KL divergence either
means that most probability mass was assigned to phones out-
side the BPC or, alternatively, a flat distribution (i.e. assigning
equal probability to each competitor phone).

The observed PDFs were obtained in the following manner.
For a given model type (i.e. pretrained or ctc), frame and layer
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Figure 2: The distribution of KL-divergences scores for
BPC PDF, random PDF and the difference between the KL-
divergence scores for BPC and random. The negative values
are only present for the difference between the BPC and ran-
dom based KL-divergence scores.

we applied the corresponding MLP phone classifier to obtain a
phone PDF. Subsequently, we removed the probability associ-
ated with the winning phone (since we are interested in the com-
petition) and normalized the remaining probability vector (i.e.
the set of competitor phones). In parallel, we constructed the
synthetic phone PDF based on the winning phone’s BPC by a
step function, whereby all phones outside the BPC are assigned
a small probability value (p = .001), and the remaining probabil-
ity is divided equally among the set of BPC-phones (excluding
the winning phone). Next, the KL-divergences was computed
according to Eq. 1, with P for the MLP-based PDF and Q for
the synthetic BPC-based PDF. For a sanity check, next to these
BPC-based phone PDFs we also constructed phone PDFs based
on random phone selections for the step function. These ran-
dom phone sets provide a baseline comparison: if latent repre-
sentations are phonetically faithful to BPCs, the KL divergence
should be significantly lower for synthetic BPC-based phone
PDFs compared to the synthetic PDFs based on random phone
sets.

Based on [5], 7 BPCs were defined: plosive /g b d p k t/,
nasal /n m N ñ/, approximant /w j l r/, fricative /x s f G z v/,
high vowel /i u I y/, mid vowel /e @ Y ø E O o/, and finally low
vowel /A a/.

Figure 2 shows all KL divergence measures for a subset of
the read aloud recordings from the Spoken Dutch Corpus (∼ 20
hours of material, analysis on ∼ 3 million frames). It presents
the distribution of the KL-divergence scores for BPC, random
phone sets and the difference between them for the feature de-
tector (CNN), transformer layer 1, 12, and 24 for both the pre-
trained and CTC fine-tuned Wav2vec2 model.

The figure shows that, across the board, there is a sub-
stantial difference between BPCs and the random phone sets
in terms of the KL divergence with the observed MLP-based
phone PDFs. Clearly, the comparison differs for the different
layers in the Wav2vec2 model, and is different for the pretrained
and finetuned variant. Interestingly, the KL-divergence does not
differ for layer 24 from the CTC fine-tuned model, while the
MLP phone classifier performed best in the phone classification
task.

Figure 3: The percentage of second best phones sharing the
same broad phonetic class as the winning phone (y-axis), as
classified by the multi-layer perceptron trained on a given layer
(x-axis) of the Wav2vec2 model. Left: pre-trained right: ctc
fine-tuned.

5. Local and global structure

The results in the previous sections show that MLP-based clas-
sifiers perform adequately on the latent representations for all
layers (Table 1, in line with [2, 3]), while the internal phone-
phone structure shows a varying pattern across layers (Figs. 1,
2). This suggests that while phone classifiers are able to produce
a likely correct winner, given a latent representation, a phoneti-
cally motivated phone-phone structure in the latent space is not
necessary. In order to investigate this further, we study the com-
petition between phones according to the MLP classifications.
More explicitly, we zoom in into the statistics of the recognized
phone and its runner-up, by counting the number of times a
given phone appears as the runner-up of a winning phone. Fig-
ure 3 gives an pictorial overview of the percentage of runner-
up phones sharing the same BPC as the winning phone, across
all MLP-output vectors on a particular layer. For the plosives,
nasals and fricatives this occurs fairly often even in the middle
layers of the model, while this is not the case for the high, some
middle and low vowels. The effect of fine-tuning can mainly
been seen in the higher layers with a reduction of the percent-
age that the second best phone label is in the same BPC as the
winning phone label.

Fig. 3 provides a glimpse on the intrinsic phone-phone com-
petition per MLP input vector, that is, at a given location in
the latent space. It raises the question to what extent these
runners-up reveal information about the intrinsic phonetic struc-
ture. Evidently it can be expected that the overall statistics of
the runner-up is informed by the phonetic neighborhood of the
winning phone. To that end, we did an analysis on 3 million
{winning phone, runner-up} combinations, layer by layer. Af-
ter normalization for the absolute number of phones, the result-
ing histogram can be translated into a distance [15] between
winning phone and runner-up, e.g. via
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Figure 4: MDS locations of Dutch vowels (monophthongs), af-
ter averaging over 50 different MDS runs; PCA-based correc-
tive rotations are used before creating the overlay. The smaller
light-blue markers denote the positions based on transformer
layer 1; the larger light-orange markers denote the positions
at layer 18; the connecting lines indicate the (simplified) route
of the MDS solutions going from transformer layer 1 to trans-
former layer 18. Applicability of the Euclidean distance as-
sumed.

d ∼ 1/(N +R) (2)

in which d denotes the distance between winning phone and
runner-up, N denotes the number of counts of the runner-up
given the winner phone, and R is a regularisation term that
corrects for very infrequent combinations. These infrequent
combinations will certainly appear since, for example, /p/ will
hardly occur as second candidate after /a/. In those cases, the
formula predicts a large distance d between /a/ and /p/, and its
numerical upper bound is determined by R.

Next, we use multi-dimensional scaling (MDS) [16, 17] to
build a global 2D map, based on the phone-phone distances d
resulting from Eq. 2. We used MDS rather than other visual-
ization methods such as t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [18] since we focus on the local and global
relations between phones instead of on clustering.

We carried out two MDS analyses, one for the vowels and
one for the consonants. Both analyses provide a view of the
structural change of the vowel and consonantal map, when mov-
ing upward through the layers. Figure 4 shows the MDS posi-
tions of vowels based on the distances obtained via Eq. 2 from
the runner-up distribution in layers 1 and 18 of the transformer
block, respectively. For layer 1 (represented by smaller light-
blue markers) the vowel triangle (cf. [5]) is clearly respected,
and the topology of the resulting configuration is very close to
the Dutch vowel system. For higher layers, the MDS solution
moves away from the configuration found for layer 1 – vowels
are pushed apart towards a much more convex vowel configu-
ration. This ’pushing apart’ appeared a robust phenomenon for
various initializations of the MDS algorithm. In terms of DNN-
mappings (e.g. Theorems 10 and 11 in [19]), an increasing con-
vexity of the configuration can be understood as preparing the
latent representation for enabling the ultimate layer to make de-
cisions using linear hyperplanes. A different but similar shift
between plosives and fricatives is shown in [4], Fig 3.

Also in the case of consonants, we witness a substantial re-
organisation of the internal structure of the group of consonants:
also this group undergoes a global transformation as a function
of layer. For consonants, the tendency towards a convex pattern
is less obvious than for vowels.

6. Discussion and conclusion
This paper shows a potential paradox. One the one hand, the
performance of MLP-based phone classifiers trained on trans-
former layers is adequate, as shown by recent papers and by
our results. On the other hand, the latent representations appear
to lose their connection with phonetic structure for the higher
transformer layers. Figs. 1, 2 and 3 each provide different views
of the (mostly weak) relation between the phonetic structure of
phones and the latent representations in Wav2vec2.

The CNN provides an interpretable reflection of the pho-
netic structure in line with classical phonetic knowledge, but
this structure changes for higher layers. Interestingly, the pho-
netic information itself in terms of phone-phone contrasts does
not disappear: the MLP classification results are excellent also
for higher layers. The relation between winning phone and
runner-up, however, changes substantially across layers. While
for the CNN output and lower transformer layers MDS provides
interpretable vowel configurations, these configurations morph
into a more circular convex pattern for higher layers. This reor-
ganization is clearest in the case of vowels; the structure of the
group of consonants also changes layer-by-layer but we could
not detect clear patterns of convexity. Evidently, Fig. 4 only
shows a glimpse of the underlying structural change, since it is
a 2D representation of a morphing that actually takes place in a
much higher dimension.

The results presented suggest that the Wav2vec2 model af-
ter finetuning using CTC is re-organising the acoustic-phonetic
space in such a way that phones can still be classified us-
ing a spatially-oriented classifier, but the neighborhood struc-
ture in terms of ambiguity at a specific location is substan-
tially changed. Apparently, strict obedience to classical pho-
netic structure in the latent space is not essential for a very good
phone classification in that space. In the near future we aim to
investigate this in more detail for other languages.

Although similarities between the neuronal structure of
Wav2vec2 and the human brain might only exist at a high con-
ceptual level (for a context see, e.g., [20]), it is worthwhile to
note that [21], in their research on the computational aspects of
the human superior temporal gyrus (STG) during speech per-
ception, show that the neuronal processing in human brains
does not directly show any relation with the structure of phones
that is presumed in classical phonetics. Various recent neuro-
physiological studies suggest that speech processing in the hu-
man brain is based on a transformation from acoustic speech
signals into internal representations of words mediated by non-
linear operations in the STG. The STG contains the nonprimary
auditory cortex where phonological processing is known to take
place. The STG represents the input speech via nonlinear pro-
cesses that include spectro-temporal processing, normalization
and restoration based on context, and involves complex audi-
tory encoding for acoustic-phonetic and prosodic features. The
high-level analogy between recent E2E ASR architectures on
the one hand and STG-distributed patterns of neural activity on
the other hand suggest that there is a parallel with respect to
the extraction of abstract and higher-order phonemic and word-
like representations from the speech signal [22, 21]. In future
work, we will further explore this parallel with non-linear trans-
formations in the STG. In this light, classical phonetics pro-
vides descriptive framework, rather than a firm basis for neuro-
physiologically plausible computational models.

The first author participates in the Dutch research NWA
InDeep project, which aims at interpreting deep networks in
speech, music and text processing.
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