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Abstract
Code-switching is a common phenomenon in multilin-

gual communities. In this paper, we study end-to-end model
for Mandarin-English intra-sentential code-switching speech
recognition. A lightweight Switch-Routing network is pro-
posed, which includes two experts and a switch router. Two
experts, representing Mandarin and English learners, implicitly
provide language identification information and skillfully use
monolingual data to assist code-switching task training, which
solves the problem of data sparsity. In addition, our network
is a lightweight structure, which makes use of the advantages
of Switch Transformer and discards its weakness of increasing
model capacity. Finally, we study the effect of using lightweight
Switch Routing in different blocks of encoder and decoder.
Compared with Bi-Encoder, proposed model has a better per-
formance on the ASRU code-switching test set, and the most
important thing is that it requires much less inference time with
RTF decreasing by 31.39%.
Index Terms: code-switching, switch-transformer, mixture of
experts, automatic speech recognition, end-to-end

1. Introduction
Code-switching (CS) refers to the phenomenon that more than
one language may be used in a single conversation. It includes
inter-sentential CS and intra-sentential CS, and widely exists
in multilingual communities. However, CS task is challenging
because it’s difficult to get enough CS training data.

Many studies have been done for the CS speech recogni-
tion. With a hybrid speech recognition system, which consists
of acoustic model, lexicon and language model, the common
method is to design mixed phone set for the lexicon and acous-
tic model [1, 2]. However, the design of the phone set add
the complexity of the speech recognition systems. Addition-
ally, the unbalanced language distribution within CS utterances
can lead to poor n-gram language model [3]. Recently, end-to-
end systems which contain Connectionist Temporal Classifica-
tion (CTC) [4, 5], recurrent neural network transducer (RNN-T)
[6, 7], and attention-based encoder-decoder (AED) [8, 9, 10],
are becoming more and more popular. Since they do not re-
quire explicit alignments and simplify the training of the model,
many works for code-switching or multilingual are based on the
end-to-end systems. As compared to hybrid systems, end-to-
end (E2E) systems don’t require the phone set design for lexi-
con, using the character or wordpiece as the output. It greatly
simplifies the training of models for multilingual or CS, since
we don’t need to pay attention to the pronunciation of different
languages. [11, 12, 13] has shown that building a single E2E
model to recognize multilingual speech is possible by taking
union over all the language-specific grapheme sets and training

the model jointly on data from all the languages. The joint train-
ing model can also do CS task if the training corpus contain CS
data. However, despite the simplistic design, E2E audio speech
recognition (ASR) systems need large mounts of training data
than hybrid based systems. Some data-augmentation techniques
are used to improve the performance. [14, 15] propose to pro-
duce CS speech data with text to speech (TTS) systems to train
acoustic models, and [16] leverages pointer-generator network
to generate CS text corpus for language models. Another strat-
egy is to leverage monolingual data to boost the performance.
[17, 18, 19] proposes a multi-encoder network to leverage ex-
ternal monolingual data, and each encoder is initialized by the
monolingual system.

More recently, [20, 21] has investigated to use mixture-of-
experts (MoE) [22] in multilingual task. With the MoE archi-
tecture, each expert can capture the language specific feature
and mitigate the conflicts between languages. The Bi-Encoder
model proposed by [18] use two transformer encoders server
as Mandarin and English experts, and the outputs of them are
combined with interpolation coefficients produced by a gating
network. Obviously, this approach increases the computational
cost significantly.

In this paper, we propose a E2E CS ASR system. We use
the WeNet [23] as the base framework, which is a very popu-
lar E2E speech recognition toolkit recently. Inspired by [24],
we add lightweight Switch-Routing mixture-of-experts to the
encoder and the decoder. The proposed model increases little
extra computational cost compared to the monolingual system,
and doesn’t require any pre-training. The model can be jointly
trained from scratch with the monolingual and CS training data.

2. Related work and method
2.1. Mixture of Experts (MoE) and variants

The architecture of mixture of experts (MoE) proposed in [25]
have been intensively investigated and found popularity in other
tasks [22, 26]. MoE can effectively improve model accuracy
by stacking multiple mixture of experts. The output of MoE
module can be defined as follows:

y =
K∑

i=1

Gi(x)Ei(x) (1)

where Ei(x) is the output of expert i, K is the set of se-
lected top-k indices, Gi(x) is the probability of the router layer
and can be defined as:

Gi(x) = Softmax(KeepTopK(H(x), k)) (2)

The H(x) adds tunable Gaussian noise to feature x.
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KeepTopK(H(x), k) keeps only the top k value, which is a
strategy of sparsity to save the computation cost of module.

2.1.1. Switch transformer

Switch transformer is proposed in [24], which simplify MoE
routing algorithm to yield training stability and computational
benefits. The router routes each output of previous layer to the
top-1 expert with largest router probability. The probability of
router layer of switch transformer can be defined as Equation 3.

G(x) = Max(Softmax(H(x))) (3)

Assuming that m is the index of largest router probability,
then the output of MoE layer is defined as Equation 4.

y = Gm(x)Em(x) (4)

2.2. Bi-Encoder

[18] proposed Bi-Encoder transformer network based MoE ar-
chitecture. In this work, two transformer encoders equivalent to
a Mandarin expert and an English expert individually provide
language-specific information. Meanwhile, a gated network in
the MoE layer acts as a decision maker, weighting the expert
output. For acoustic features x, LID information can be given
from the two different experts.

hch = MandarinEncoder(x) (5)

hen = EnglishEncoder(x) (6)

At each frame t, interpolation coefficients αcn
t and αen

t of
MoE is dynamically obtained from a gating network, which are
utilized to weighted the two encoder output:

hmix
t = αcn

t hcn
t + αen

t hen
t (7)

The interpolation coefficients αt = [αcn
t , αen

t ]T has two el-
ements, αcn

t and αen
t range from [0, 1] and the sum of the co-

efficients equals to one for each frames.

αt = Softmax(W cn
coeh

cn
t +W en

coeh
en
t + bcoe) (8)

2.3. Lightweight Switch-Routing

2.3.1. Language experts

Scaling up to a larger model has been an effective way towards
a flexible and powerful E2E ASR system. It has shown that
a large Conformer [27] model can achieve state-of-the-art re-
sults across a wide variety of tasks. However, developing large
models in real-world application is seriously hindered by the
expensive computation cost of both training and inference time.

The guiding design principle for Switch Transformers
[24] is to maximize the parameter count of a Transformer
model in a simple and computationally efficient way. Inspired
by Switch Transformers network, we propose a lightweight
Switch-Routing (LSR) module. The LSR module consists of
two FFN layers and a router which is equivalent to a switch-
gated network. Specifically, one thing that differs from the
Switch Transformer is that only two experts are required for
the CS task, one for Mandarin and one for the English language
specialist. As shown in Figure 1, the network architecture con-
sists mainly of two parts, LSR module in encoder block and
LSR module in decoder block. We extend the second Macaron-
style FFN to the LSR module in the last conformer block of en-
coder and in the last transformer block of decoder respectively.

Normal Switch-Transformer [24] consists of a series of a
large number of experts, which makes the model complex and
difficult to train. However, in the code-switching task, only two
FFN layers are required to serve as Mandarin expert and English
expert respectively, to provide experience for their respective
language learning.

Ech
t = MandarinFeedForward(ht) (9)

Een
t = EnglishFeedForward(ht) (10)

where the ht is the output of the upper convolutional model,
and Ech

t , Een
t represents the output of Mandarin expert and

English expert at frame t respectively. According to the routing
decision, the current frame is routered to the FFN layer of the
corresponding language for the next step.

2.3.2. Switching routing

As mentioned in [24], contrary to MoE routing, we instead use
a simplified strategy, named Switching Routing, where we route
to only a single expert. We show that this simplification reduces
routing computation and performs better.

Switch layer takes a token representation x as an input and
then routes this to the best expert, which selected from two lan-
guage experts. Since the high-level representation hch

t and hen
t

already maintain rich linguistic information, the router coeffi-
cients rt = [rcnt , rent ]T can be modeled with a single linear layer
as Equation 11. Where the two interpolation coefficients rcnt
and rent range from [0, 1] and the sum of the coefficients equals
to one for each frames.

rt = Softmax(Wtht + bt) (11)

yt =

{
rcht Ech

t if(rcht >= rent )

rent Een
t if(rcht < rent )

(12)

where yt represents the switch FFN layer output in Equa-
tion 12. With the introduction of the sparsely-gated switch FFN,
LSR can dynamically route inputs to corresponding language
expert, which enables us to satisfy training and inference effi-
ciency by having sub-network activated on per-example basis.

3. Experiments
3.1. Dataset and experimental setup

Three data set are used in our experiments: 500 hours monolin-
gual Mandarin, 460 hours monolingual English, and 200 hours
Mandarin-English code-switching. The Mandarin-English and
Mandarin corpus are obtained from ASRU 2019 Mandarin-
English Code-Switching Challenge data set [28]. English is
selected from LibriSpeech 460 hours clean data [29]. Among
them, 10% of the mono data and additional 20 hours code-
switching data are used as the development set. Meanwhile, we
use three test sets: 5 hours Mandarin from ASRU (ASRU CN),
5 hours English test clean official test set from Librispeech
(Libri) and 20 hours Mandarin-English code-switching official
test set from ASRU (ASRU CS). Performances are measured
by character error rate (CER) for Mandarin and word error rate
(WER) for English. As for the code-switching, we report Man-
darin part CER, English part WER and the total mix error rate
(MER), as those in ASRU2019 Challenge.

We select 3,003 Mandarin characters, 1,000 English BPE
subwords, along with three other token(unk, blank and
sos/eos) to form the 4,006 Character-BPE modeling units. The
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Figure 1: Proposed architecture. The blue-green dotted box represents the Lightweight Switch-Routing(LSR) module.

80 dimensional log-mel filterbanks acoustic features are ex-
tracted with 25ms windowing and 10ms frame shift, and global
Cepstral Mean and Variance Normalization (CMVN) computed
using the training set is applied on the fbank features. SpecAug-
ment [30] is applied for data augmentation during all model
training. Monolingual and Multilingual baseline use 12-layer
conformer in encoder and 6-layer transformer in decoder. We
initialize the encoders of Bi-Encoder model by encoder of pre-
trained monolingual Mandarin and English models separately.
It is worth noting that proposed model only needs random ini-
tialization and does not need complex pre-training. The atten-
tion dimension is 256 and the dimensionality of inner-layer in
FFN is 2048. And 4 heads are used for multi head attention in
all attention sub-layers.

3.2. Result

3.2.1. Proposed model and baselines

We present the performance of baseline and proposed model in
Table 1. It is observed that the monolingual model can obtain
a low error rate on the monolingual test sets, but it can han-
dle neither inter-sentential CS task nor intra-sentential CS task.
The model using only CS training data can handle CS tasks, but
the MER is 13.52% due to insufficient CS training data with
annotations. We train a multilingual model with monolingual
data and CS data together, which can be compatible with multi-
ple scene data recognition and improves CS performance. Sec-
ond to last row of Table 1 shows the Bi-Encoder model repro-
duced according to [18]. Compared with multilingual model,
the WER of Bi-Encoder model is reduced on both monolin-
gual and CS test sets, which is consistent with [18]. The last
line of Table 1 shows that proposed model can make the sys-
tem recognize all kinds of data, and the mono Mandarin the CS
performance is significantly improved.

In Table 1, we calculate the RTF by attention decoding with
the Mandarin, English, and code-switching test sets together. It
is worth nothing that the RTF of the proposed model is reduced
by 31.39% compared with Bi-Encoder, which greatly saves the

computing resources and improves the decoding speed.

Table 1: A comparison of (CERs/WERs/MERs) (%) and Real
Time Factors (RTFs) on testsets. ASRU CN/Libri/ ASRU CS:
5/5/20 hrs Mandarin-only test set from ASRU/official test clean
test set from LibriSpeech/official Mandarin-English CS test set
from ASRU, respectively. Man/Eng/CS/Multi: the same net-
work structure, trained with mono Mandarin, mono English,
code-switching and all data, respectively. Bi-Enc: Bi-Encoder
baseline; LSR: proposed Lightweight Switch-Routing.

Model #Params RTF ASRU Libri ASRU CS

CN CH EN MIX

Man 49.2M - 2.34 - - - -
Eng 49.2M - - 6.53 - - -
CS 49.2M - - - 11.22 32.42 13.52

Multi 49.2M 0.145 2.73 6.83 8.52 27.89 10.62
Bi-Enc 84.2M 0.223 2.64 6.48 8.50 27.52 10.57
LSR 51.3M 0.153 2.47 6.48 8.20 27.54 10.30

3.2.2. Ablation study

We conduct a number of experiments in an ablation study.
We tried to modify the blocks of encoder and decoder, and
compared the performance of LSR module in different blocks.
The training data used by these models in Table 2 are consis-
tent, including monolingual and code-switching data. Com-
paring LSR Enc-1layer and LSR Enc-2layers from Table 2, it
is found that the CER of monolingual Mandarin test set de-
creases by only 0.2%, and the performance of other test sets
does not improve significantly. Comparing LSR Enc-2layers
and LSR Enc-all, except for the 0.13% difference in CER on
the monolingual Mandarin test set, the comparison results of
the other two test sets show that there is no significant gain in
applying LSR module in more blocks of encoder. Similarly, it
can be concluded that applying the LSR module in more blocks
of decoder will not bring much gain to the model.

However, it can be seen that LSR Enc Dec has the best per-
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Table 2: Performance comparison (CER/WER/MER) (%)
of LSR module in different block of encoder and decoder.
LSR Enc-1layer: replaces macaron FFN with LSR module in
the last block of encoder. LSR Enc-2layers: replaces mac-
aron FFN with LSR module in the last two blocks of encoder.
LSR Enc-all: replaces macaron FFN with LSR module in all
blocks of encoder. LSR Enc Dec: replaces macaron FFN with
LSR module in the last block of encoder and decoder respec-
tively.

Model Params ASRU Libri ASRU CS

CN CH EN MIX

LSR Enc-1layer 50.2M 2.79 6.61 8.41 27.60 10.49
LSR Enc-2layers 51.3M 2.59 6.54 8.28 27.94 10.42

LSR Enc-all 61.8M 2.46 6.55 8.47 27.86 10.58
LSR Enc Dec 51.3M 2.47 6.48 8.20 27.54 10.30

formance compared to the first three models. In particular, com-
pared with LSR Enc-1layer, it decreases CER/WER/MER by
11.47%, 1.97% and 1.81% respectively on monolingual Man-
darin, monolingual English and CS test sets. This proves that it
is effective to add LSR module to the last block of encoder and
decoder respectively.

In this section, we investigate the effect of increasing the
number of experts to prove that the improvement of model per-
formance is due to the excellent ability of the two experts to
learn specific information, not the increase in model capacity.
Table 3 shows the performance comparison on different number
of experts with LSR. Line 2 presents the results of our proposed
optimal LSR model which are maked as MoE-2e. The two ex-
perts learn specific linguistic information separately. Line 3
presents the results of LSR model which are maked as MoE-
3e. The results clearly show that performance do not get better
as the number of experts increases. Specially, the performance
of LSR Enc Dec-2e achieves up to 6.4% relative CER improve-
ment over the LSR Enc Dec-3e on the ASRU CN. Similarly, on
the Libri English clean test set, compared with LSR Enc Dec-
3e, WER of LSR Enc Dec-2e was relatively reduced by 0.8%.
The most important thing is that the proposed LSR improves
the overall MER by 1.2% on the ASRU CS test set. Although
the WER increase of 0.34% in the English part of the ASRU
code-switching test set may be due to the small proportion of
English parts in the code-switching test set. It is obvious that
LSR Enc Dec-3e increases the capacity of the model as the
number of experts increases, but the model performance does
not improve. It turns out that two experts of LSR Enc Dec-2e
do learn specific language information, which leads to further
improvement of the model effect. This conclusion will also be
presented more intuitively in graphical form below.

Table 3: Performance comparison (CER/WER/MER) (%) of in-
creasing the number of experts on LSR module. LSR Enc Dec-
2e: our proposed optimal LSR model which has two ex-
perts in the last block of encoder and decoder respectively.
LSR Enc Dec-3e: LSR module with three experts in the last
block of encoder and decoder respectively.

Model Params ASRU Libri ASRU CS

CN CH EN MIX

LSR Enc Dec-2e 51.3M 2.47 6.48 8.20 27.54 10.30
LSR Enc Dec-3e 53.4M 2.64 6.53 8.37 27.20 10.42

In Table 4, only the training data differs between the two
models. LSR Enc Dec trained with all data achieves a signifi-
cant improvement on CS, with up to 24.26% relative mix error
reduction over LSR Enc Dec trained witch only code-switching
data. It is observed that the LSR module has better ability to
leverage the monolingual data, demonstrating the efficiency of
LSR module.

Table 4: Performance comparison (CER/WER/MER)(%) of
LSR Enc Dec trained with different data. CS/Mono+CS: re-
places only code-switching train set/Mandarin, English and
code-switching train set together.

Model TR-Data ASRU Libri ASRU CS

CN CH EN MIX

LSR Enc Dec CS - - 11.3 32.46 13.60
LSR Enc Dec Mono+CS 2.47 6.48 8.20 27.54 10.30

(a) 没文化真可怕有文化真可
怕.

(b) SO WE NEED TO REME-
MBER THAT WHEN.

(c) 形容自己叫SNOBBISH形
容别人叫CHEEKY.

(d) 期望在恋人身上看到CON-
SCIOUS品质.

Figure 2: Visualization of the router coefficients rch and ren of
proposed model. The blue line and gray line represents routing
probability of Mandarin and English experts respectively.

We visualize the router coefficients of lightweight Switch-
Routing for different utterances. As shown in Figure 2, switch
routing can accurately determine the language category for pure
Mandarin or English utterance, while improving the ability of
switching point conversion in intra-sentential code-switching
task. It further proves the effectiveness of the proposed LSR
code-switching E2E architecture.

4. Conclusions
In this paper, we apply lightweight Switch-Routing on the
CTC/AED E2E ASR framework. The RTF value of proposed
model reduces by 31.39% compared to the Bi-Encoder, which
accelerates the model decoding speed. LSR module includes
two parallel FFN, acting as Mandarin and English experts re-
spectively, which is equivalent to providing LID information
invisibly. In addition, we increased the number of experts, and
the results showed that the model did not gain from it. Finally,
we demonstrate the effectiveness of our method on both mono-
lingual and CS data set. In the future, we will try to increase a
larger number of experts to train a LSR model.
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