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Abstract

The pre-trained speech encoder wav2vec 2.0 performs very well
on various spoken language understanding (SLU) tasks. How-
ever, on many tasks, it trails behind text encoders with tex-
tual input. To improve the understanding capability of SLU
encoders, various studies have used knowledge distillation to
transfer knowledge from natural language understanding (NLU)
encoders. We use a very simple method of distilling from a tex-
tual sentence embedder directly into wav2vec 2.0 as pre-training,
utilizing paired audio-text datasets. We observed that this method
is indeed capable of improving SLU task performance in fine-
tuned settings, as well as full-data and few-shot transfer on a
frozen encoder. However, the model performs worse on certain
tasks highlighting the strengths and weaknesses of our approach.
Index Terms: spoken language understanding, knowledge dis-
tillation, pre-training

1. Introduction
Spoken language understanding (SLU) tasks [1] have greatly
benefited from modern transformer-based speech encoders, such
as wav2vec 2.0 [2], to the point that end-to-end models can now
replace cascaded models, doing away with the ASR component.
However, these models still trail behind equivalent tasks in the
textual modality [3]. This could be interpreted as that textual
models still contain much knowledge that speech models lack.

One way to transfer knowledge from one model to another
is through knowledge distillation (KD) [4]. KD was originally
used to transfer knowledge from larger models to smaller ones.
However, with the assumption that parallel speech and text inputs
are roughly equivalent, one could perform cross-modal KD from
textual models to speech models. This idea has seen success in
previous studies [5, 6, 7].

In this paper, we perform KD directly from a sentence em-
bedder to a wav2vec 2.0 speech encoder. This produces a pre-
trained sentence-embedder-guided utterance encoder (SEGUE),
which can be used for sequence-level SLU tasks. We conduct
experiments on SLU tasks—sentiment and emotion detection on
speech modality, fluent speech commands (FSC), and automatic
speech recognition (ASR). Our results demonstrate that SEGUE
is capable of improving performance over vanilla wav2vec 2.0,
to varying degrees. We show results for fine-tuned settings, as
well as full-data and few-shot transfer with a frozen encoder.
However, we also observe that SEGUE performs worse on two of
said tasks. Our code is available on GitHub1.

1https://github.com/declare-lab/segue
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Figure 1: Diagram of SEGUE pre-training. Solid arrows indicate
gradient flow in the backward pass, and dashed arrows indicate
the lack thereof.

2. Related Work
Our approach aims to produce an utterance embedding, which
was inspired by sentence encoding problems in the literature.
In particular, we base the overall concept on Sentence-BERT
[8]. We adopt the idea of knowledge distillation (KD) proposed
by Hinton et al., and textual-to-spoken cross-modal KD has
previously been explored by the following works. Cho et al.
[5] perform KD directly with the downstream task, whereas we
attempt to perform KD as pre-training for different downstream
tasks to reuse. Denisov et al. [6] perform KD in pre-training as
we do, but they construct an utterance encoder by initializing
from a trained ASR model’s backbone connected to a trained
NLU backbone. In contrast, we attempt to distill knowledge
directly into a wav2vec 2.0 encoder without ASR training and
without a trained NLU module on top. Kim et al. [7] use a more
complex architecture and perform KD in both pre-training and
fine-tuning stages.

3. Method
Our method is based on the simple idea of distilling knowledge
from a sentence embedder T into a speech encoder S, with
the assumption that the textual input t and speech input s are
roughly equivalent in meaning, as shown in Figure 1. To pro-
duce a single fixed-length embedding vector given a speech
input s of length l, the sequence of speech encoder output vec-
tors [S1(s), S2(s), . . . , Sl(s)] is average-pooled into a single
embedding vector S(s), similar to Sentence-BERT [8]:

S(s) =
1

l

l∑

i

Si(s) (1)

A mean squared error (MSE) loss is then used to align the outputs
of the speech student model to that of the textual teacher model.

L(s, t) = ∥S(s)− T (t)∥22 (2)
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During pre-training, the loss L(s, t) is computed, and its
gradient w.r.t. the parameters of speech encoder S is computed
to train said encoder, while sentence embedder T remains frozen.

We used the all-mpnet-v2-base checkpoint provided by the
sentence-transformers package [8] as the sentence embedder.
The speech encoder is a pre-trained wav2vec 2.0 base encoder
as released by Baevski et al. [2]. Hence, both models produce a
768-dimensional embedding vector. Our model has 95 million
parameters, equal to that of the wav2vec 2.0 base model.

This method requires text and speech of approximately
equivalent meaning, so we used the 960 hours LibriSpeech
dataset [9] as a source of parallel text and speech data.

One potential weakness of this method is that this may not
capture the rich paralinguistic features in speech such as prosody,
which are typically thought to be important for the semantic
content of utterances. However, there may still be enough infor-
mation in the training data for the model to learn to make use of
these features to some extent.

3.1. Setting details

For pre-training, we used a linear LR schedule with warmup over
the first 5000 steps, and a peak learning rate of 3e-5. The AdamW
optimizer [10] was used with beta parameters 0.9 and 0.999, and
0 weight decay. We trained for 10 epochs on the LibriSpeech
dataset. We used two A6000 GPUs with a per-device batch size
of 8, totaling 16. The training took approximately 28 hours. We
saved a checkpoint every 5000 steps, and average the parameters
of the last 10 checkpoints to produce the final model.

3.2. Contrastive pre-training

Inspired by CLIP [11], our initial idea was to use the InfoNCE
loss [12] to contrastively train a speech encoder and a text en-
coder to share the same embedding space. The task was set up
such that the model has to predict, within a batch, which pairs
of textual sentences and utterances correspond to each other,
i.e. positive pairs. We monitored the loss, as well as the mean
positive-pair similarity:

S+(U, S) =
1

|U |

|U|∑

i=1

S(ui, sj) (3)

where u ∈ U is a batch of utterances, s ∈ S is a batch of textual
sentences s.t. ui and ji form positive pairs, and S(ui, sj) is the
cosine similarity between the ith utterance embedding and the
jth sentence embedding.

We found that this quickly causes catastrophic forgetting in
the text encoder, and the speech encoder was not able to learn
effectively from the setting. Therefore, we froze the text encoder,
at which point it resembled a KD setting, but using InfoNCE
rather than MSE loss, along with a learnable temperature for use
with InfoNCE. We found that S+(U, S) correlated with good
downstream task performance, but the loss did not. However,
when we explored using KD with an MSE loss, it matched the
best contrastive models that we had, and checkpoint selection
with loss in KD was more consistent than with S+(U, S) in
InfoNCE. Hence, we decided to use KD instead of contrastive
training.

4. Experiments
We perform pre-training of SEGUE using the above method, and
then evaluate the model on several downstream tasks, in fine-
tuned settings (i.e. with a tunable encoder), as well as full-data

and few-shot transfer settings with a frozen encoder (henceforth
referred to simply as ”full-data transfer” and ”few-shot transfer”).
We compare the results with the vanilla wav2vec 2.0 baseline.
These tasks were done with the addition of a single linear layer
on top of the encoder. We use the same AdamW setting as in pre-
training, and a linear LR schedule with warmup unless otherwise
stated. As both models were trained on 16 kHz mono audio, any
audio input not in that format was converted into said format
before being fed into the models.

4.1. Downstream tasks

We evaluate on sentiment regression with MOSEI [13], sentiment
and emotion classification with MELD [14], intent classification
with the MInDS-14 [15] en-US subset, and intent classification
and slot-filling with Fluent Speech Commands (FSC) [16]. Ad-
ditionally, we evaluated on ASR with FLEURS [17] as it may
help highlight the weaknesses of SEGUE.

For MInDS-14, we randomly split the data into train-
development-test subsets in a 60:20:20 ratio.

For multimodal tasks, i.e. MELD and MOSEI, we used only
the speech modality, so we expected that the results would be far
from state-of-the-art where the textual modality and potentially
visual modality are used as well.

It should be noted that our copy of MOSEI has some missing
videos, and due to the raw dataset no longer being publicly
available, our results may not be fully comparable with results
from other works.

5. Results
5.1. MOSEI

For the MOSEI sentiment task, the model was trained with a
regression task, and rounding was used to retrofit the task as a
classification task during evaluation. The fine-tuning and full-
data transfer results are reported in Table 1. For full-data and
few-shot transfer, we use an analytic solver for ridge regression
with α = 100.

For fine-tuning, we trained SEGUE for 3 epochs with 30%
warmup steps, but we found that vanilla wav2vec 2.0 needed
more epochs to converge so the baseline was trained for 5 epochs
with 20% warmup steps. We trained with a peak LR of 3e-5 and
a batch size of 8. We conducted three runs and report the mean
and standard deviation of the metrics. We tried averaging the last
10 checkpoints, which we found tend to boosted overall perfor-
mance but worsen MAE. Hence, we report both best-checkpoint
and averaged-checkpoint results.

For both fine-tuning and full-data transfer, SEGUE improves
performance across all metrics.

For few-shot transfer, we trained with k samples per class,
under the seven-class setup, obtained by rounding the labels
to the nearest integers. Due to the size of the data table, we
instead report the results as plots – Figure 2a, Figure 2b, and
Figure 2c. In terms of MAE and correlation, SEGUE learns faster
than vanilla wav2vec 2.0. In terms of F1 score, SEGUE has a head
start and maintains approximately the same lead as k grows.

5.2. MELD

The results for fine-tuning and full-data transfer for MELD are
shown in Table 2. SEGUE outperforms the baseline in both
settings.

For fine-tuning, we trained for 5 epochs with 20% warmup
steps and a batch size of 8. The wav2vec 2.0 baseline could not
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Table 1: Results of MOSEI fine-tuning. The number after ± indicates standard deviation.

Model MAE Corr F1 Acc2 Acc7

Fine-tuning

w2v 2.0 .799 ± .006 .458 ± .016 72.9 ± 0.4 73.4 ± 0.2 37.5 ± 0.3
(averaged) .799 ± .002 .460 ± .009 72.7 ± 0.4 73.0 ± 0.4 39.2 ± 0.9
SEGUE .781 ± .006 .473 ± .015 73.1 ± 0.8 73.5 ± 0.3 40.5 ± 0.5
(averaged) .797 ± .008 .473 ± .006 73.5 ± 0.5 73.6 ± 0.5 40.1 ± 1.5

Full-data transfer

w2v 2.0 .855 .246 63.3 63.5 39.8
SEGUE .836 .326 65.5 65.4 40.5
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Figure 2: Plot of MOSEI k-shot per class performance against k.

Table 2: Results of MELD fine-tuning and full-data transfer. The
number after ± indicates standard deviation.

Model Sentiment F1 Emotion F1

Fine-tuning (LR = 3e-6)

w2v 2.0 46.8 37.2
(averaged) 47.3 39.3
SEGUE 53.2 41.0
(averaged) 53.2 41.1

Fine-tuning (LR = 3e-5)

SEGUE 53.3 42.3
(averaged) 54.1 47.2

Full-data transfer

w2v 2.0 45.0 ± 0.7 34.3 ± 1.2
SEGUE 45.8 ± 0.1 35.7 ± 0.3

converge with a learning rate of 3e-5 which we used for SEGUE,
so we fine-tuned it at 3e-6 instead, and evaluated SEGUE in that
setting as well. We also average the last 10 checkpoints and
report the performance.

For full-data transfer, we trained for 20 epochs at a peak LR
of 1e-3, with 10% warmup steps, and a batch size of 8. Due to
the relatively close results and the training being somewhat noisy,
we once again run thrice and report the average and standard
deviation.

For few-shot transfer, we trained for 5 epochs at a peak LR
of 1e-2 with 10% warmup steps. The results are once again
presented as plots, in Figure 3 and Figure 4. The plots show that
SEGUE has a head start, and mostly maintains that advantage as
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Figure 3: Plot of MELD k-shot per class sentiment F1 score
against k.

k grows.

5.3. Fluent Speech Commands

As with other fine-tuning settings where the results are close,
we ran each experiment thrice. For fine-tuning, we trained for
5 epochs at a peak LR of 3e-5, with 10% warmup steps and a
batch size of 8. For full-data transfer, we trained for 60 epochs
at a peak LR of 1e-2, with 10% warmup steps and a batch size
of 8.

As can be seen in Table 3, wav2vec 2.0 achieves approxi-
mately the same accuracy as SEGUE on fine-tuning. More surpris-
ingly, wav2vec 2.0 is able to achieve 94.7% accuracy on full-data
transfer even on a frozen encoder. In doing so it also outper-
forms SEGUE which only managed to reach 90.6% accuracy.
We hypothesize that this is because the task can be performed
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Figure 4: Plot of MELD k-shot per class emotion F1 score
against k.

Table 3: Results of FSC fine-tuning and full-data transfer. The
number after ± indicates standard deviation.

Model Exact match accuracy

Fine-tuning

w2v 2.0 99.6 ± 0.0
SEGUE 99.6 ± 0.1

Full-data transfer

w2v 2.0 94.7
SEGUE 90.6

well with less understanding capability, relying more on word
detection capability. The relative ease of this task as shown by
the high accuracy scores may also point toward this hypothesis.
Since SEGUE is trained against semantic embeddings alone, it
is likely that it has lost some of the word detection capability
of the original wav2vec 2.0 encoder, hence performing worse
with a frozen backbone. However, it may not have completely
forgotten the lost capability, hence it was still able to recover to
the same performance as wav2vec 2.0 when fine-tuned.

Note that the above hypothesis may not apply to MInDS-14
despite it also being an intent classification task, as it contains
utterances that are more free-form, unlike FSC’s mostly fixed
sentence structure, and thus may benefit more from deeper rea-
soning.

5.4. MInDS-14

The fine-tuning and full-data transfer results for MInDS-14 are
shown in Table 4, and the few-shot transfer results in Figure 5.

For fine-tuning, we trained SEGUE for 40 epochs at a peak
LR of 3e-5, with 10% warmup steps and a batch size of 16. The
baseline once again needed longer to converge, so we trained for
60 epochs instead. We observed that the baseline could not stably
converge, so we conducted 6 runs and broke down the results.
On the other hand, SEGUE managed to stabilize the training, and
improved the converged performance as well.

For both full-data and few-shot transfer, SEGUE drastically
improves over the baseline.

5.5. FLEURS ASR

For FLEURS ASR, wav2vec 2.0 achieved a word error rate of
18.4, while SEGUE achieved 23.1. This is as expected, as SEGUE

Table 4: Results of MInDS-14 fine-tuning and full-data transfer.
The number after ± indicates standard deviation.

Model # runs Accuracy

Fine-tuning

w2v2 (all runs) 6 46.5 ± 47.0
w2v2 (failed runs) 3 3.5 ± 0.0
w2v2 (converged runs) 3 89.4 ± 2.3
SEGUE 3 97.6 ± 0.5

Full-data transfer

w2v 2.0 – 54.0
SEGUE – 77.9
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Figure 5: Plot of MInDS-14 k-shot per class accuracy against k.

was trained as a sequence-level encoder, so it would likely not
perform as well on ASR based on a connectionist temporal clas-
sification (CTC) [18] loss, which is a token-level classification
task. On top of that, if the aforementioned hypothesis regarding
the relatively poor FSC performance is true, since ASR relies
heavily on word detection capabilities it follows that SEGUE
would perform worse.

6. Conclusion
We produced SEGUE, a pre-trained model for sequence-level
SLU tasks. Our experiments demonstrated that it improves over
the base wav2vec 2.0 model for many SLU tasks, some to a
drastic degree, but performs worse on some tasks. We suggest
that SEGUE’s strength over wav2vec 2.0 is a deeper ability to
understand speech, but it comes at a cost of some word detection
capability. Hence, SEGUE may perform worse on tasks that rely
less on understanding and more on word detection, especially
when the encoder is frozen, though some of said capability
may be recovered in fine-tuning. Potential future work may
include using a more diverse pre-training dataset to achieve more
comprehensive KD, and possibly using multilingual sentence
embedders to train a multilingual utterance encoder.
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