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Abstract
In few-shot bioacoustic event detection, besides interested tar-
get events, background noises and various uninterested sound
events lead to complex decision boundaries, which require reg-
ularized feature distributions in feature space. Due to the low
label availability of uncertain noise events, existing few-shot
learning methods with entropy-based regularizers suffer from
overfitting during optimization. In this paper, we propose a
transductive inference model with a prior knowledge based reg-
ularizer (PKR) to overcome the overfitting problem. We use a
task-adaptive feature extractor to reconstruct a regularized fea-
ture space. A PKR is proposed to minimize the divergence be-
tween the original and reconstructed feature space. The devel-
opment set of DCASE 2022 Task 5 is adopted as the experimen-
tal dataset. With the increasing iterations, the proposed model
performs with long-lasting results around 55.43 F-measure, and
well solves the overfitting problem in transductive inference.
Index Terms: Few-shot Learning, Transductive Inference,
Bioacoustic Event Detection

1. Introduction
Due to the limited manual labor in data annotation, few-shot
learning [1–3] has become a promising paradigm to solve tasks
with few labeled data, such as few-shot bioacoustic event detec-
tion tasks [4]. In a few-shot bioacoustic event detection setting,
a backbone model is first trained with sufficient labeled data of
base classes in training set. For the model evaluation, each au-
dio file is usually a separate few-shot task containing unlabeled
data from new classes for prediction (Query Set), and a few la-
beled data from each new class are given (Support Set). Besides
the interested target events, the background noises and various
uninterested events are all considered as noise events. Due to
the sparsity of the target events, the infrequent presence of tar-
get events causes a data imbalance problem with noise events
in support set. The dense noise events with uncertain patterns
make the few-shot bioacoustic event detection task more diffi-
cult.

Traditional few-shot learning methods [5–9] usually take
the pre-trained backbone model as a general feature extractor
and construct a simple classifier according to the support set.
For example, Prototype Network [6] constructs a linear classi-
fier by calculating the distance to the center point (prototype)
of each class. However, plenty of noise events with uncertain
patterns are embedded with an irregular feature distribution in
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(a) Original feature space (b) Newly reconstructed feature space 

Figure 1: This figure visualizes the embedded feature dis-
tribution of target and noise events in different feature
spaces through the t-SNE algorithm [15]. The audio file
BUK1 20181013 023504.wav is chosen with two classes of
events (target and noise).

the feature space. The decision boundaries between noise and
target events are too complex to fit by these simple classifiers,
as shown in Figure 1 (a). To address this issue, we start from the
feature space reconstruction, as shown in Figure 1 (b), to enable
the divisible decision boundaries with transductive inference.

It is natural to leverage the labeled data with the cross-
entropy loss to optimize the feature space. Due to the limited
labeled data in support set, the feature space suffers from an
overfitting problem during the optimization. Transductive in-
ference methods [8, 10–14] are recently proposed to leverage
the unlabeled data in query set to regularize the supervised op-
timization process. A regularizer item is usually added to the
loss function to prevent the overfitting problem. Most existing
regularizers are based on Shannon Entropy [13, 16] and its de-
formations [8,17], which constrain the posterior predicted prob-
ability distribution to the lower Shannon entropy. Intuitively,
these entropy-based regularizers can cluster similar samples to-
gether to reach higher classification confidence. However, the
entropy-based regularizers can not handle the noise events well
due to the high Shannon Entropy of noise events. Considering
the data imbalance of dense noise events in both the support and
query set, the loss function of cross-entropy loss and entropy-
based regularizers will encourage the model to construct an ab-
normal feature space in a local optimization point, where all
queried samples are classified as noise events for high confi-
dence. To overcome the overfitting problem, a prior knowledge
based regularizer (PKR) is proposed to regularize the optimiza-
tion by transferring prior knowledge into transductive inference.

This paper proposes a transductive inference model to re-
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construct the feature space with a PKR. The Prototype Net-
work [6] is used as the backbone model. Rather than optimiz-
ing the whole backbone model, we build a task-adaptive fea-
ture extractor to construct a new feature space with transductive
inference. A few labeled data in the support set will be used
to optimize the newly constructed feature space via the cross-
entropy loss. A PKR is proposed to regularize the optimization
by minimizing the divergence between the original and newly
constructed feature spaces. The prototypes of base classes in
the training set are introduced into the transductive inference
process as prior knowledge. The PKR uses prior knowledge
to measure the feature distribution divergence with two met-
rics, distance-based and angle-based. Intuitively, PKR aligns
the original and newly constructed feature spaces at the global
level, while cross-entropy can optimize decision boundaries at
the local level without overfitting. The traditional entropy-based
regularizer is also added in the final loss function for higher
classification confidence and acts as the control group in the
ablation study to verify the effectiveness of the PKR. All ex-
periments are conducted on the development dataset of DCASE
2022 Task 5. The proposed model outperforms prior transduc-
tive inference methods with 55.43 F-measure. Along with the
increasing iterations of optimization, PKR shows stable perfor-
mance instead of the overfitting problem in entropy-based reg-
ularizers.

2. Method
2.1. Few-shot Scenario

In few-shot bioacoustic event detection, the training dataset
Xtrain = {(xi, yi)|yi ∈ Ytrain} is a large scale of labeled dataset,
where xi is an audio clip, yi is corresponding event class label
and Ytrain is the set of all base classes in the training dataset.
The testing set for each few-shot task consists of a support set
Xs = {(xi, yi)|yi ∈ Ys} and a query set Xq = {xi}, where
Ys = {target, noise}, Ytrain ∩ Ys = ∅. The few-shot event de-
tection task can be converted to a classification task by splitting
the whole audio file into several segments. The support set is
a continuous piece of labeled audio that contains 5-shot target
events, and the left pieces of duration between two target events
are taken as noise events. As the length of noise events duration
is far longer than target events in common sense, there are many
more labeled segments of noise events in support set with a data
imbalance problem.

2.2. Transductive Inference

The transductive inference is a few-shot strategy that deems that
the unlabeled data in query set can be utilized to further im-
prove the model performance instead of dropping them during
the prediction process. The whole query set is accessible in
transductive inference to further optimize the model before the
final prediction.

2.3. Pre-trained Backbone Model

We train Prototype Network [6] in the training set as the pre-
trained backbone model for later transductive inference. In
brief, Prototype Network is a model that takes the center of the
embedding features of the same classes samples in support set
as the corresponding class prototypes. The queried sample can
be predicted by calculating the distance between its embedding
feature and each class prototype, where the nearest class proto-
type is the prediction result. In our work, the Prototype Network
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Figure 2: An overview of the proposed model. The prototype
bank contains the center points (prototypes) of all base classes
in the training set. The green arrows indicate the forward prop-
agation process, while the blue arrows are the backpropagation
process.

is artificially divided into two components, surface feature ex-
tractor Fs(·|θs) and deep feature extractor Fd(·|θd) as Figure 2
shows. This division will not influence the training process of
Prototype Network:

f = Fd(Fs(x|θs)|θd) (1)

argmin
θs,θd

−y log
exp(−dϕ(f, vy))∑

c∈C
exp(−dϕ(f, vc))

(2)

where C is the classes set in the training process, dϕ is the dis-
tance function (L2 distance here) and vc is the prototype (center
point) of class c in feature space.

2.4. Architecture

As Figure 2 shows, there are three feature extractors in the ar-
chitecture of our model. the surface feature extractor Fs(·|θs),
deep feature extractor Fd(·|θd) and task-adaptive feature ex-
tractor Ft(·|θt). Fs(·|θs) and Fd(·|θd) constitutes the backbone
model, while Ft(·|θt) is newly constructed with random param-
eter initialization for optimization in transductive inference.

We suppose that the beginning shallow convolution layers
in the backbone model can only observe local information with
a limited receptive field so that the extracted surface features are
relatively general to different bioacoustic events. The deeper
convolution layers in the back part of the backbone model have
a larger receptive field of input spectrum to learn more abstract
semantic features of base classes [18], which may be unhelpful
to the novel events in query set. Based on these assumptions, the
surface feature extractor Fs(·|θs) will be fixed and consistent
in transductive inference. The task-adaptive feature extractor
Ft(·|θt) will be optimized to construct a new feature space in
transductive inference to replace the original feature space con-
structed by Fd(·|θs). This design enables the adjustment of up-
dated parameter amount to accelerate the transductive inference
run-time by the discretionary Ft(·|θt). To optimize the Ft(·|θt),
we propose a prior knowledge based regularizer to prevent the
overfitting problem caused by cross-entropy loss in support set.
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2.4.1. Prior Knowledge based Regularizer (PKR)

In few-shot bioacoustic event detection, the uncertain noise
events do not have stable patterns. The plenty of noise events
are embedded with an irregular feature distribution and make
the class decision boundaries too complex to fit by a linear clas-
sifier. The limited capability of classifiers requires the recon-
struction of feature space for simple divisible decision bound-
aries of noise events. In transductive inference, Ft(·|θt) is opti-
mized to construct a new task-adaptive feature space with cross-
entropy loss in support set. Due to the limited labeled data in
support set, the cross-entropy loss will rapidly drop Ft(·|θt)
into overfitting during the optimization.

To solve this overfitting problem, we propose a prior knowl-
edge based regularizer aimed at transferring the original knowl-
edge from Fd(·|θd) to Ft(·|θt) through feature space alignment.
We concatenate the new prototypes [6] (mean feature point of
a class) of support set and all base classes prototypes of train-
ing dataset as a prototype bank W ∈ R(k+m)∗z , where k is
the number of classes in support set, m is the number of base
classes in training dataset and z is the dimension number of
deep feature f . The prototype bank W can be considered as the
anchors of both the original deep feature space and the newly
constructed task-adaptive feature space. The principle of fea-
ture space alignment is to keep the relative position of each
sample to anchors as constant as possible in two feature spaces.
This principle enables the general consistent feature distribution
of the entire query set and can optimize local feature distribu-
tion through cross-entropy loss. Based on the above principle,
we propose the two metrics, angle-based and distance-based, to
measure the divergence of two feature distributions in original
and newly constructed feature space. Although the distance-
based metric performs better in experiments, the angle-based
metric is still introduced to show the potential idea of regulariz-
ing the feature space reconstruction.

Angle-based Divergence (PKR-A): The angle-based di-
vergence measures the consistent angles between the task-
adaptive feature, original deep feature, and the prototype bank:

q = Fs(x|θs) (3)

f = Fd(q|θd), f ′ = Ft(q|θt) (4)

LPKR = − 1

N

m+k∑

i

−cos similarity(f −W [i], f ′ −W [i])

(5)

where x comes from both support and query set, N is the batch
size, and cos similarity is the function to calculate the cosine
value of the angle between two vectors.

Distance-based Divergence (PKR-D): It is worth noting
that the prototype bank W can be considered as the classifier in
the backbone model, as the distance with each prototype repre-
sents the weight of each class. As a result, the distance-based
divergence can be represented as the prediction probability dis-
tribution as follows:

ŷ = softmax(dϕ(W, f)/t) (6)

y′ = softmax(dϕ(W, f ′)) (7)

LPKR = − 1

N

N∑

i

m+k∑

j

ŷi[j] log y
′
i[j] (8)

where t is a temperature coefficient, y′, ŷ ∈ Rm+k, y′[j] means
the jth dimension of y′ and dϕ is the L2 distance here. Note-
worthy, the number of dimensions is not a significant parameter,

as the LPKR reflects relative distance relationships. Coinciden-
tally, LPKR has a consistent form with the knowledge distillation
technique [19], while we speculate that the better performance
of PKR-D may be ascribed to the temperature coefficient.

2.4.2. Feature Space Reconstruction

We further introduce the cross-entropy classification loss and
entropy-based regularizer Lm of maximizing the mutual in-
formation [8] for higher classification confidence. The cross-
entropy loss LCE only involves the data in support set:

LCE = − 1

Ns

Ns∑

i

m+k∑

j

ysi [j] log y
′
si [j] (9)

where Ns is the batch size of support set data, and ysi is the
label of a sample i in support set. The entropy-based regularizer
Lm of maximizing the mutual information [8] only involves the
data in query set:

y′′
q = softmax(dϕ(W [: k], f ′)), ȳ′′

q =
1

N −Ns

N−Ns∑

i

y′′
qi

(10)

Lm =
k∑

j

ȳ′′
q [j] log ȳ′′

q [j]−
1

N −Ns

N−Ns∑

i

k∑

j

y′′
qi [j] log y

′′
qi [j]

(11)

where W [: k] ∈ Rk∗z is all the prototypes of support set, and
N is the same with the batch size in Equation (8). The total loss
of transductive inference optimizing is:

argmin
θt

αLPKR + βLCE + γLm (12)

3. Experiment
3.1. Experimental setups

Dataset All used data belong to the development dataset of
DCASE 2022 task 5 [20]. The training dataset consists of five
sets of audio files derived from different sources, containing
174 audio recordings, 21 hours duration, 47 classes, and 14229
events. The testing set consists of 18 audio recordings with a
total of about 6 hours duration and 1077 total positive events.
Feature and Segment The Short Time Fourier Transform is
used with 22.05kHz down-sampling rate, 1024 window size and
256 hop size to extract the 128 dimensions per-channel energy
normalization (PCEN) features. For training, the audio clip seg-
ment follows 0.2s segments length and 0.1s hopping length for
sampling. For testing, we follow the setting of the official base-
line [20].
Training Setting The training dataset will be divided into 0.9
and 0.1 for training and validation. The prototype network is
composed of 3 residual block layers and will be trained for
50 epochs, where the best model in validation will act as the
pre-trained backbone model. In transductive inference, we con-
struct two convolution layers as the task-adaptive feature extrac-
tor. The Adam optimizer is used to optimize the task-adaptive
feature extractor with a 0.0001 learning rate for 15 epochs. The
parameters of loss function is α = 1, β = 0.1, γ = 0.1. This
choice is due to the fact that LPKR should have a larger weight
than LCE to overcome overfitting, while Lm follows the same
weight with LCE according to Yang et al. [17].
Model Evaluation The model performance is evaluated by an
event-based F-measure metric [21].
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Table 1: The comparison of different methods.

Model Precision Recall F-measure
Baseline (TM) [20] 2.42 18.32 4.28
Baseline (PN) [20] 36.34 24.96 29.59
Prototype Network [6] 28.76 38.85 33.05
TIM [8] 52.31 30.10 38.21
Fine-tuning [13] 47.50 34.40 39.90
TI-ML [17, 22] 59.20 46.34 51.99
Dcase-Top-1 [23] - - 74.40
Dcase-Top-2 [24] - - 50.00
Dcase-Top-3 [25] - - 60.00
Ours (PKR-A) 49.64 43.91 46.60
Ours (PKR-D) 60.69 51.02 55.43

Table 2: The ablation study of our proposed models.

Our Model Regularizer F-measure
Lm (entropy-based) LPKR

Backbone 33.05
Entropy-based ✓ 38.66
PKR-A-only ✓ 45.54
PKR-A ✓ ✓ 46.60
PKR-D-only ✓ 55.37
PKR-D ✓ ✓ 55.43

3.2. Experimental Results and Analysis

Competitors: Baseline(TM/PN) are the official baselines pro-
vided by DCASE community [20]. Prototype Network [6] is
the famous framework in few-shot learning. TIM [8], Fine-
tuning [13] are state-of-the-art transductive inference methods
that optimize the classifier and whole model respectively with
entropy-based regularizers. TI-ML [17, 22] is the state-of-art
transductive inference mutual learning framework with extra
data augmentation in few-shot bioacoustic event detection. As
the model performance is related to several factors such as
model structure and external datasets, we choose the top 3 mod-
els in the official rank of DCASE to show the potential model
capabilities instead of a strict performance comparison.
Results: Table 1 shows that our models outperform all the
competitors in all metrics. This distance-based proposed reg-
ularizer (PKR-D) outperforms the pre-trained backbone model
(Prototype Network) and prior transductive inference methods.
Dcase-Top-3 outperforming Dcase-Top-2 in the public valida-
tion set indicates the few-shot bioacoustic sound detection still
facing a generalization problem in different datasets. Consid-
ering the external datasets in Dcase-Top-2, better performance
of the proposed PKR-D shows the effectiveness of the feature
space reconstruction, while PKR-A performance indicates the
potential of other prior-based regularizers.
Ablation Study: As the third term Lm in the loss function
Equation (12) is the entropy-based regularizer, the ablation
study is conducted to verify that improvement of our model per-
formance is ascribed to the proposed PKR instead of the exist-
ing entropy-based regularizer, as Table 2 shows. Compared
with Backbone, PKR-D-only and PKR-A-only, the results indi-
cate that our proposed PKR LPKR greatly improves the perfor-
mance based on the pre-trained backbone independently. When
there is no PKR in feature space reconstruction, the Entropy-
based result is inferior to both PKR-A-only and PKR-D-only,
which verifies the irreplaceable state of the PKR in the proposed
architecture. The entropy-based regularizer Lm can only bene-
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Figure 3: The figure shows the robustness of models with differ-
ent regularizers during the optimization. The regularizers are
from prior works and the ablation study.

fit the PKR models with subtle improvement.
Influence of optimizing Iterations: In transductive inference,
the termination condition is important but difficult to determine,
especially involving large-scale parameters optimization. The
usual practice (Fine-tuning [13]) sets a fixed optimizing itera-
tion with a small learning rate, which highly relies on empiri-
cism and the robustness of the model. Particularly in few-shot
bioacoustic event detection, we assume that entropy-based reg-
ularizers are heavily influenced by optimizing iterations with
an overfitting problem. To verify the overfitting problem in
entropy-based regularizer and the robustness of our PKR, we
optimize the Fine-tuning model [13] and ablation components
of our model with different iteration, as shown in Figure 3.
The Entropy-based and Fine-tuning models are all suffering a
performance drop along with the increasing iterations of opti-
mization after the best performance point, as both of them only
use entropy-based regularizers disabled by the uncertain noise
events. These results verify the overfitting problem of entropy-
based regularizers with uncertain noise events and illustrate the
difficulty of ending point choice with entropy-based regulariz-
ers. In contrast, our proposed PKR shows a great stable perfor-
mance along with increasing optimizing iterations, which well
solves the overfitting problem and verifies the effectiveness of
our reconstructed feature space. As a result, we recommend
considering the prior knowledge in a few-shot transductive in-
ference design, which can effectively reduce the difficulty of
ending point selection in optimization.

4. Conclusion
This paper proposes a transductive inference model to recon-
struct a regular feature space for few-shot bioacoustic event de-
tection. A novel prior knowledge based regularizer is further
proposed to address the overfitting problem during the feature
space reconstruction. The proposed model outperforms existing
transductive inference methods with more robust performance
in DCASE 2022 Task 5. This recommends introducing prior
knowledge into few-shot transductive inference for more stable
performance. In the future, we will further explore the adap-
tive ending point of optimization to accelerate transductive in-
ference. The source code has been released1.

1https://github.com/Voltmeter00/DCASE2022Task5
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