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Abstract
Research on improving automatic speaker verification systems
to detect speech spoofing has focused mainly on English, with
little attention given to other languages creating a significant
gap in language coverage. This paper introduces HABLA,
the first voice anti-spoofing dataset in the Spanish language
including Argentinian, Colombian, Peruvian, Venezuelan, and
Chilean accents. The dataset provided by HABLA comprises
over 22,000 authentic speech samples from male and female
speakers hailing from five distinct Latin American nations as
well as 58,000 spoof samples that were generated through the
use of six different speech synthesis strategies, including recent
voice conversion and text-to-speech algorithms. Finally, initial
findings on the efficacy of pre-existing Antispoofing Systems
models are presented along with concerns regarding their per-
formance in languages other than English.
Index Terms: Voice anti-spoofing, anti-spoofing dataset in
Spanish, Voice conversion, Spanish spoof samples

1. Introduction
Voice recognition methods and automatic speaker verification
(ASV) systems provide unique and cost-effective means of
identifying individuals and re-identifying spoken utterances, re-
spectively [1, 2, 3, 4]. ASV systems are commonly integrated
into smart devices like Amazon Alexa and Google Home, en-
abling voice-activated tasks such as turning lights on/off, send-
ing messages, or making calls. However, despite their benefits,
both voice recognition and ASV systems are highly susceptible
to spoofing attacks.

Previous works [2, 5] suggest four different forms of at-
tacks: (1) voice imitation; (2) playback of pre-recorded audio
of the target user; (3) Voice Conversion (VC); and, (4) Text-To-
Speech (TTS). While the first two types rely on playing back
or mimicking the original voice, the latter two create synthetic
speech that is indistinguishable from human perception. Voice
conversion algorithms, for example, produce high-quality forg-
eries by preserving the prosodic characteristics of the voice [4].

Several datasets have been created to facilitate research and
training of models for detecting voice spoofing, including the
VCTK, Spoofing and Anti-Spoofing (SAS), ASVSpoof, and
Fake or Real (FoR) corpora [6, 7, 8]. However, all existing
datasets are focused on the English language, which leaves the
performance of models trained on these datasets in other lan-
guages largely unknown. Given the variability in pronuncia-
tion, accent, and prosody across different languages, it is un-
clear whether models trained on English datasets would gen-
eralize well to other languages. Previous research [9] argues
that acoustic features and frequencies can vary considerably be-
tween languages influencing generalization. As such, there is

a need for more diverse and comprehensive datasets that cover
a wider range of languages and accents to evaluate the effec-
tiveness of existing voice recognition and anti-spoofing mod-
els. Moreover, the recent development of generative models has
created new challenges for anti-spoofing systems as they can
deceive both current anti-spoofing solutions and human percep-
tion [10].

This paper introduces HABLA, the first voice anti-spoofing
dataset in the Spanish language, including Argentinian, Colom-
bian, Peruvian, Venezuelan, and Chilean accents. The genera-
tion of spoof examples focuses on contemporary speech synthe-
sis algorithms, including voice conversion and text-to-speech.
In total, there are more than 22,000 real samples available in
HABLA’s dataset, representing both males and females from
five different Latin American countries, and 58,000 spoof sam-
ples generated by six different speech synthesis strategies. Fi-
nally, we discuss our findings and present the efficacy of pre-
existing Antispoofing architectures [10] in our new dataset.

2. Related work
2.1. Datasets and spoof examples generation strategies

The development of multiple academic challenges that provide
datasets comprising both genuine and spoofed voice samples
has spurred research into techniques for voice anti-spoofing [7,
11, 6]. Reimao and Tzerpos [8] introduced a dataset com-
prising 111,000 and 87,000 genuine and synthetic samples, re-
spectively. Synthetic samples were generated using commercial
Text-To-Speech algorithms such as Amazon AWS Polly, Baidu
TTS, Microsoft Azure TTS, and Google Wavenet TTS.

Subsequent datasets are improved by adding a greater vari-
ety of spoofing methods using voice conversion algorithms. Wu
et al. [11] built their dataset by implementing five TTS and eight
VC algorithms on the VCTK dataset, which contains voice data
of 109 people in British English with multiple accents. Among
the different VC methods presented, it is worth highlighting:
(i) the modification of the spectral slope by changing the first
generalized cepstral coefficient of Mel (MGC); (ii) the voice
conversion toolkit provided by the open source Festvox system;
and, (iii) the Tensor-Based arbitrary Voice Conversion (TVC)
system. In [12, 13], generative adversarial networks were used
to generate spoofed samples of a target user’s voice. In [14],
a diffusion probabilistic model was implemented to generate
Mel-frequency cepstral coefficients from an input. In [15], vari-
ational auto-encoders are implemented to generate spoof sam-
ples, and the experiment is conducted on the VCTK corpus.
Currently, no known datasets are available in the Spanish lan-
guage using voice model synthesis algorithms to train special-
ized voice anti-spoofing models.
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2.2. Anti-spoofing models

Voice anti-spoofing models can be classified according to voice
representation and feature extraction strategies. The most
widely used acoustic features include Linear Frequency Cep-
stral Coefficients (LFCC) and Constant Q Cepstrum Coeffi-
cients (CQCC) [16]. Dua et al. [1] uses the following fea-
ture extraction strategies: Mel Frequency Cepstral Coefficients
(MFCC), CQCC, and Inverse Mel Frequency Cepstral Coeffi-
cients (IMFCC). To obtain more discriminative acoustic fea-
tures, a Long short-term memory (LSTM) network is imple-
mented using an assembly strategy. On the other hand, Tak et
al. [17] used the wav2vec 2.0 pre-trained model to extract audio
features from wave-forms representation.

Wang and Yamagishi [16] compared different wav2vec pre-
trained models with LFCC. According to their results, the
wav2vec achieves better results even varying the subsequent ar-
chitecture (aka back-end) that uses the features to predict if the
input trial is spoofed or bona fide. In another work [18], the
same authors compared LFCC and a Lineal Filter Bank (LFB)
as feature extraction strategies, plus a back-end selected from
a Light Convolutional Neural Network (LCNN), an LCNN +
LSTM layer, and an LCNN + Attention layer. The best results
were obtained via LFCC with a back-end composed of LCNN
+ LSTM implemented with a Probability to Similarity Gradient
(P2SGrad) activation function.

Arif et al. [4] used two representations for feature extrac-
tion: LFCC which extracted features in the frequency domain,
and the extended local ternary pattern (ELTP) which extracted
features in the time domain. LFCC and ELTP are combined
to later enter a BiLSTM neural network to obtain the feature
vector. In [2] the anti-spoof model is composed of a Convo-
lutional neural network (CNN) capable of extracting frequency
representations, an LSTM for sequence prediction, and a non-
linear classifier. That model extracts spatial local characteris-
tics in the time domain, as well as dependencies within the fre-
quency domain. Wang et al. [10] defined three different strate-
gies for extracting acoustic features: LFCC, spectrograms, and
LFB. In the back-end were defined three different architectures,
LCNN-LSTM, LCNN-Attention, and LCNN-trim-pad. In [19]
the characteristics of the voice spectrum were extracted using
MFCC, CQCC, and Log Power Spectrum (LPS). The extracted
characteristics are sent to a transformer encoder to extract the
deepest features, then, a residual network (ResNet) calculates
a composed score. In [20], a model architecture composed
of a Siamese network for learning the representations and a
multi-layer perceptron for classification is proposed. They use
the Siamese network to extract the representation vectors of
wav2vec (pre-trained model for audio signals) features.

3. Dataset construction
The authentic sample data used in this study was sourced
from [21]. The study selected Argentinian, Colombian, Peru-
vian, Venezuelan, and Chilean accents, comprising 162 distinct
speakers and 22,816 sample files, based solely on the availabil-
ity of genuine samples with CC BY 4.0 license and with more
than 10 speakers per accent (see Table 1). The audio samples
were recorded as 48kHz single-channel and were provided in
16-bit linear PCM RIFF format, accompanied by correspond-
ing textual translations. This text was subsequently employed to
apply text-to-speech technology and generate counterfeit sam-
ples. We conducted downsampling of the data at two distinct
sampling rates: 16kHz to align with the ASVSpoof format file

and 22.05kHz to conform with the voice conversion models’
data format.

Table 1: Real samples distribution

Colombian Male 17 2534
Female 14 2070

Chilean Male 17 2487
Female 12 1602

Peruvian Male 20 2917
Female 18 2529

Venezuelan Male 12 1754
Female 10 1463

Argentinian Male 12 1670
Female 30 3790

Total 162 22,816

For the generation of spoofed examples, five different pub-
lished voice conversion architectures were evaluated, of which
three were selected (StarGAN [12], CycleGAN [13], and a dif-
fusion model [14]). The selection was performed by two hu-
man judges who rated the speech conversion in terms of their
self-perceived quality. After the counterfeit sample is gener-
ated, it is down-sampled to 16khz to keep the sampling rate
homogeneous throughout the dataset. Our approach to generat-
ing spoofs using voice conversion algorithms involved selecting
source-target pairs of speakers. For each accent present in the
dataset, we randomly selected four males and four females as
source speakers. For each source speaker, we then randomly
selected four males and four females from each existing accent
as targets and created the different source-target pairs. This en-
sured that all possible combinations of accent and gender were
covered.

The Microsoft Azure TTS service was chosen for the cre-
ation of Spanish TTS spoof samples. This service was se-
lected primarily due to its wide range of TTS voices, which
cater to each accent and gender featured in the genuine sample
dataset. Another approach used for the generation of counter-
feit examples involved a combination of TTS technology and
the VC algorithms elucidated earlier. Speech samples were ini-
tially produced in the Azure TTS service using text as input
and were subsequently enhanced through the utilization of VC.
Table 2 depicts the distribution of the counterfeit samples. In
total, 58,000 samples were produced by implementing six dis-
tinct spoof strategies. The resulting dataset is publicly available
at https://zenodo.org/record/7370805, with a de-
tailed description of the source-target combinations used by the
voice conversion algorithms and the folder structure.

Table 2: Spoof samples distribution

SPOOF SAMPLES
Name Type # samples

StarGAN VC 16,000
CycleGAN VC 16,000
Diffusion VC 16,000

TTS TTS 5,000
TTS-StarGAN TTS-VC 2,500

TTS-Diff TTS-VC 2,500

4. Experiments
The purpose of our experiments is to ascertain the efficacy of
pre-existing anti-spoofing systems in the newly created Spanish
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dataset. To this end, we have selected three architectures that
exhibited the highest performance in [10]:

1. LFCC-LCNN-trim-pad: A light convolutional neuronal net-
work architecture (LCNN) with an LFCC as back-end. The
input size was fixed to N = 750 frames. In case the input is
shorter, it will be padded with zeros. Otherwise, it is trimmed
by selecting a random window of size N .

2. LFCC-LCNN-attention: The same LCNN, but some lay-
ers were replaced with a single-head-attention-based pooling
layer and a fully connected (FC) layer.

3. LFCC-LCNN-LSTM-sum: The same LCNN, but the layers
after the CNN were replaced with two Bi-LSTM layers, an
average pooling layer, and an FC layer.

The three listed architectures above implement MSE for
P2SGrad as loss function [22]. We used these state-of-the-art
models in all our experiments. After partitioning the dataset into
training (40%), validation (20%), and test (40%), we proceeded
to evaluate three distinct sets of models. First, we evaluated the
performance of English pre-trained models with our anti-spoof
test set, using checkpoints for each model as in [10]. These
models were trained using the ASVSpoof2019 dataset (English
dataset). We refer to these models as EP (English pre-trained
models) from now on.

Subsequently, we trained a set of models using our train-
ing set from scratch and evaluated their performance using the
test set. These trained-from-scratch models constitute the sec-
ond set of models. We used the same hyper-parameters as [10]
for all cases. We refer to these models as SS (Spanish from
scratch models). Finally, for our final set of models, we take the
pre-trained English models and perform extra training rounds
(further-pretrained) with our Spanish dataset. This final ex-
periment is aimed at taking existing knowledge of the English
model and refining it for Spanish. We refer to these models
with the acronym FT (further-pretrained models). The met-
ric to evaluate the performance of the different models was the
EER. The models were trained for 100 (SS) and 50 epochs
(FT ), batch size of 64, and a learning rate of 0.0003, all trained
on a Tesla A40 GPU card1.

4.1. Experiments results

The performance of the EP models based on their architec-
ture is illustrated in Figure 1. While using the ASVSpoof2019
dataset in English, we achieved an EER similar to that reported
in [10]. However, upon evaluating the model’s performance us-
ing our Spanish anti-spoofing dataset, the EER increased in all
cases, surpassing 45%.

Based on these findings, we have drawn two significant
conclusions. Firstly, we have been able to replicate state-of-the-
art results in the English dataset ASVSpoof2019. Secondly, we
observed a significant decrease in performance when applying
the anti-spoofing system to languages other than the language
it was trained on. While we anticipated this outcome, the mag-
nitude of the error surpassed our expectations, indicating a lack
of multi-language capability in pre-existing speech anti-spoof
models.

Figure 2 illustrates a comparison of the EP and SS mod-
els in their classification of genuine voice examples from the
Spanish dataset. Across the three distinct architectures, the EP
models correctly classified an average of only 62.6% of genuine
samples, while the SS models achieved an average accuracy

1Models can be found at https://github.com/
Ruframapi/HABLA

Figure 1: EP models evaluation results over English and Span-
ish datasets.

Figure 2: EP vs SS models comparison on real voice examples
from the Spanish dataset.

of 96.08% in their classification of genuine samples in the test
set. This outcome serves to reinforce the notion that language
is a crucial factor in speech anti-spoofing models, and a sample
originating from an unknown language may be misidentified as
a genuine example.

In the subsequent analysis, we evaluate and contrast the per-
formance of EP and SS models across the different accents
present in the Spanish dataset. Figure 3 depicts the outcomes
obtained exclusively for the LFCC-LCNN-LSTM-sum archi-
tecture, yet similar results were obtained for the others. Based
on our observations, the EP model did not attain an accuracy
greater than 80% for any of the accents. In fact, for the Colom-
bian accent, the EP model’s classification accuracy was a mere
40%. In contrast, the SS model performed with an accuracy of
over 80% across all accents.

We also evaluate the performance of EP and SS mod-
els for each type of spoof generation strategy employed in our
Spanish dataset (see Figure 4). Our findings suggest that the
TTS and TTS-VC strategies did not pose any significant chal-
lenges for both EP and SS models. However, the results ob-
tained for StarGAN, CycleGAN, and diffusion strategies were
comparatively poor, with classification accuracy of 22%, 45%,
and 62% respectively. Out of all the spoof generation tech-
niques evaluated, the GAN-based VC strategies yielded the
worst results, indicating that the generated spoof samples us-
ing these techniques were the most challenging to classify. No-
tably, SS models achieved 100% correct classification results
(note that only spoof samples in the test set were considered for
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Figure 3: EP vs SS models comparison on real voice examples
grouped by accent and gender from the Spanish dataset. Only
the results for LFCC-LCNN-LSTM-sum architecture are shown.

Figure 4: EP /SS models comparison on the different kinds
of spoof examples in the Spanish dataset. Only the results for
LFCC-LCNN-trim-pad architecture are shown.

this analysis), representing a significant improvement in perfor-
mance compared to EP models.

Our final experiments focus on evaluating the performance
of the FT models. The FT models were trained from the latest
checkpoint of EP , and further trained for 50 additional epochs
on our Spanish dataset. The EER results obtained for the vari-
ous types of models (i.e., EP , SS, and FT ) on both the Span-
ish and English datasets, using two distinct architectures, are
illustrated in Figure 5. The cross-language combinations (i.e.
when we evaluate on a language not seen in training) yield the
worst results. These combinations correspond to EP models
evaluated on the Spanish dataset and SS models evaluated on
the English dataset. Conversely, when the model was evaluated
in the same language as the one in which it was trained on, the
results were better.

The FT models improve the cross-language combination
effect. For instance, the SS model trained on LFCC-LCNN-
LSTM-sum architecture and evaluated on the English dataset
yielded 22,489% of EER, but the FT models using the same
architecture achieved a 14,29% EER, which is an improve-
ment of 8.19%. For LFCC-LCNN-Attention the improvement
was 2.10%. For Spanish samples, the improvement was more
than 50% in both architectures in comparison with EP models.
These results show that taking a checkpoint from a pre-trained

Figure 5: EER for different models (SS, EP , and FT ) and
datasets (Spanish and English datasets)

model in English and doing additional training rounds in Span-
ish achieves the best balance of EER in the two languages. One
added benefit of this transfer learning approach is that it reduces
the number of training epochs required to attain results on par
with those of the SS models in our Spanish dataset.

As expected for the SS models, the EER for samples in
Spanish decreased considerably but increased for samples in
English when compared to the EP . A direct and global com-
parison suggests that the SS models are better than EP with
an average error over the two languages of 11.69% compared
to 26.36% of EP models. One possible hypothesis is that us-
ing the Spanish language as a training base language is better
than using an English base. Nonetheless, further experimenta-
tion is required to validate this hypothesis, as the datasets are
not directly comparable.

5. Conclusions
This paper introduced HABLA, the first dataset of Latin Amer-
ican Spanish accents for voice anti-spoofing. Our contributions
can be summarized as follows:

1. We consolidate a corpus with five different accents (Colom-
bian, Peruvian, Chilean, Argentinian and Venezuelan) from
Latin-America Spanish, with six different voice spoof strate-
gies: three VC algorithms, one TTS system, and two TTS-
VC combinations, generating 58,000 spoof samples with
high quality.

2. The results of the EP models revealed that the anti-spoof
models trained with datasets in English have a noticeable
degradation in performance when used on datasets in Span-
ish. Multi-language capabilities cannot be assumed even us-
ing state-of-the-art architectures.

3. The results of the SS models reveal the importance of us-
ing training data in the target language. In these models the
EER for Spanish samples dropped to 3% or less and correctly
classified more than 90% of the samples labeled as real.

4. None of the evaluated models had problems detecting spoof
samples generated with TTS services.

5. Interestingly, all models, irrespective of their architecture, ex-
perienced greater difficulty in classifying the Colombian ac-
cent. As a potential avenue for future research, we suggest
exploring the underlying reasons for this observation.
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