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Abstract
Whisper, the recently developed multilingual weakly super-
vised model, is reported to perform well on multiple speech
recognition benchmarks in both monolingual and multilingual
settings. However, it is not clear how Whisper would fare under
diverse conditions even on languages it was evaluated on such
as Arabic. In this work, we address this gap by comprehen-
sively evaluating Whisper on several varieties of Arabic speech
for the ASR task. Our evaluation covers most publicly avail-
able Arabic speech data and is performed under n-shot (zero-,
few-, and full) finetuning. We also investigate the robustness of
Whisper under completely novel conditions, such as in dialect-
accented standard Arabic and in unseen dialects for which we
develop evaluation data. Our experiments show that although
Whisper zero-shot outperforms fully finetuned XLS-R models
on all datasets, its performance deteriorates significantly in the
zero-shot setting for five unseen dialects (i.e., Algeria, Jordan,
Palestine, UAE, and Yemen).
Index Terms: Arabic, automatic speech recognition, Arabic di-
alects, Whisper, speech analysis, natural language processing,
speech technology.

1. Introduction
Self-supervised and weakly-supervised training paradigms that
exploit massive amounts of data have recently resulted in im-
pressive performance improvements on a wide range of tasks
across modalities [1, 2, 3, 4]. One such example is Whisper [5],
which is a multilingual multi-task weakly supervised speech
model. Although Whisper was evaluated on multiple speech
benchmarks, often demonstrating good performance, it remains
unclear how it would fare in scenarios with significant speech
variability. In this work, we investigate the generalization capa-
bility of Whisper on various Arabic dialects and accents for the
speech recognition task. Arabic is an excellent context for test-
ing the robustness of Whisper, due to its diverse collection of
languages and dialectal varieties. In particular, rather than be-
ing a single monolithic language, Arabic is a collection of lan-
guages and dialectal varieties that vary extensively over geog-
raphy (the Arab world extends across Asia and Africa). Arabic
is also diaglossic, with a so-called high variety (Modern Stan-
dard Arabic [MSA]) that is spoken sometimes in education and
government and several low varieties (dialects) that are used in
everyday communication. Due to this rich sociolinguistic con-
text and variability, high performance on MSA speech can not
realistically guarantee comparable performance on dialects or
even accented MSA.

∗Equal contribution

In this paper, we test Whisper within this context of wide
variability. In particular, we benchmark Whisper on an exten-
sive number of existing and new Arabic datasets under n-shot
conditions (i.e., zero- and few-shot as well as full finetuning).
We use XLS-R [6] as our baseline and evaluate the general-
ization capability of Whisper on both out-of-domain datasets as
well as unseen dialects that have not been studied before. More-
over, we stress-test Whisper models by examining robustness of
their finetuned versions on unseen dialects and dialect-accented
MSA.

2. Related Work
End-to-end (E2E) deep learning models have shown significant
improvements in ASR performance by learning directly from
the audio waveform without relying on an intermediate feature
extraction layer [7]. One recent example of an E2E ASR is the
recently proposed Whisper [5], a transformer-based sequence-
to-sequence model trained in a multitask fashion. Namely,
Whisper is trained on ASR, voice activity detection, language
identification, and speech translation. It is trained in a weakly
supervised manner with up to 680K hours of labeled audio
data. The model is tested in zero-shot settings on multiple
datasets and achieves state-of-the-art performance on bench-
mark datasets such as librispeech [8], TEDLIUM [9], and Com-
mon Voice [10]. Although Whisper displays robustness on these
benchmark datasets, recent research has demonstrated that it
can be vulnerable to adversarial noise. This vulnerability can
lead to significant degradation in performance and hurt model
ability to transcribe targeted sentences [11]. Therefore, it re-
mains unclear how Whisper would fare in scenarios with sig-
nificant variability such as on Arabic. Although the pretraining
data of Whisper has ∼ 739 hours of Arabic speech, it is unclear
what varieties of Arabic this data covers.

The E2E model proposed by [12] is the first to introduce
a lexicon-free approach for Arabic ASR using recurrent neu-
ral networks with connectionist temporal classification (CTC).
DeepSpeech E2E is trained by [13] on Arabic and English
datasets. These authors also investigate the internal represen-
tations learned by the model on different speech tasks. An
E2E transformer-based architecture is also proposed by [14],
employing a multitask CTC/attention objective function. The
model achieves state-of-the-art on both Modern Standard Ara-
bic (MSA) and dialects.

While E2E ASR models can streamline the ASR process
and outperform traditional models, they still demand a signif-
icant amount of labeled data for training from scratch. This
poses a challenge for low-resource languages such as Arabic.
To address this issue, self-supervised and semi-supervised mod-
els have gained popularity. The reason is that these models
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learn useful representations from large amounts of unlabeled
or weakly-labeled data and can be finetuned on different speech
tasks [15, 6, 16, 17]. Similar to text- and image-based pretrained
models, these models are used in two stages: pretraining, where
the model learns the representation, and finetuning, where these
learned representations are used for a specific task. Wav2vec2.0
[15] is a pretraining model that is self-supervised and is based
on a combination of convolutional neural networks (CNNs) and
transformers that learn to predict a set of masked audio input
samples. An extension of Wav2vec2.0 is XLS-R [18], which
is a cross-lingual pretraining model trained on 436k hours of
speech from 128 languages (including 95 Arabic speech hours
from common voice [10] and VoxLingua107 [19]). One work
finetunes XLS-R on Arabic data from common voice 6.1 [20].

Another self-supervised framework is w2v-BERT [17],
which combines contrastive learning and masked language
modeling (MLM). w2v-BERT was adapted for Arabic ASR
by finetuning on FLEURS dataset [21]. The Arabic subset of
FLEURS represents dialect-accented standard Arabic spoken
by Egyptian speakers, though it has not been extensively studied
or presented as a noteworthy example of dialect-accented Ara-
bic. Unlike Whisper, an issue of Wav2vec2.0 and w2v-BERT is
that these require a finetuning stage as they lack proper decod-
ing.

3. Datasets and Preprocessing
We make use of a wide range of Arabic datasets including data
covering MSA, various Arabic dialects, and accented MSA.
Each of these datasets provides a unique perspective on the
challenges and complexities of Arabic ASR. We introduce
these datasets next.

Common Voice [10] (v6.1, v9.0, v11.0). These datasets
are from Mozilla Common Voice,1 where volunteers record
sentences in MSA with each recording validated by at least two
users. We exploit three versions of common voice: v6.1, v9.0,
and v11.0. These have 50, 88, and 89 hours, respectively.

MGB-2 [22]. This dataset contains about 1, 200 hours
of Arabic broadcast data from Aljazeera Arabic TV channel
collected over 10 years. It includes time-aligned transcription
obtained from light-supervised alignment. The dataset has 70%
MSA while the remaining 30% is in various Arabic dialects.

MGB-3 [23]. This dataset contains 80 programs from
YouTube channels based in Egypt, featuring various genres
like comedy, cooking, sports, and science talks. The dataset
includes transcriptions of the first 12 minutes of each program,
resulting in a total of 4.8 hours of transcribed data.

MGB-5 [24]. This dataset contains 10.2 hours of Mo-
roccan Arabic speech data from 93 YouTube videos belonging
to seven genres such as comedy, cooking, and sports.

FLEURS [21]. This contains a subset of Arabic lan-
guage that represents standard Arabic spoken with an Egyptian
accent. We utilize this subset to evaluate the robustness of our
MSA models in accented conditions (section 6). The dataset
contains 4.39 hours of MSA produced by Egyptian native
speakers.

AraYouTube. We introduce this new dataset for our
work. We manually identify soap opera videos in Algerian,

1https://commonvoice.mozilla.org/en/about.

Jordanian, Palestinian, UAE, and Yemeni dialects and task a
team of trained native speaker annotators to transcribe them.
We acquire 3.2, 0.98, 4.4, and 2.94 hours of the dialects,
respectively. We use AraYouTube as unseen datasets solely for
evaluation purposes (section 7).

Preprocessing. Some of the datasets we use have incon-
sistencies. For example, in CV6.1 the utterance �Ñ �ê

�
Ë

�
ÈA ��® �	̄

(faqaAla lahumo) has complete diacritic markings, while the
utterance �I�Ò£ Ðñj. 	JË @ @ 	XA

	̄ (f<*A Alnjwm Tmst) does not
have any diacritics, even though both come from the Quran. For
this reason, we follow [25] in standardizing the data. Namely,
we (a) remove all punctuation except the % and @ symbols; (b)
remove diacritics, Hamzas, and Maddas; and (c) transliterate all
eastern Arabic numerals to western Arabic numerals (e.g. 29
to 29). Since we do not treat code-switching in this work, we
remove all Latin characters.

4. Experiments
We experiment with two versions of Whisper (large-v2 and
small) on all the datasets that we consider in our study. As stated
earlier, our main objective is to investigate Whisper’s robustness
under dialectal and accented conditions. We evaluate Whisper
in three settings: zero-shot, few-shot, and full finetuning. For
comparison, we also finetune the XLS-R model.

4.1. Experimental Setup

We sample audio with 16kHz rate and perform preprocessing
steps on the text described in Section 3. We use transform-
ers2 for the training and evaluation pipeline. We use single
node 4xV100 - 32GB and 4xA100-40GB GPUs for all of our
experiments. The whisper-large-v23 does not fit into a single
V100 GPU even with batch size 1. To overcome this, we paral-
lelize the model across the GPUs enabled by deepspeed4 ZeRo
stage-2. To fully utilize the GPU memory, we use single device
batch size 32 and effective batch size 256 including gradient
accumulation steps (varying subject to dataset size) for multi-
GPU training. During finetuning (applied to both few-shot and
full finetuning), the feature extraction layer is frozen (for both
XLS-R and Whisper models) while the other layers are train-
able. This is because the feature extraction layer has already
learned the general representations of speech signals during the
pretraining process. For optimization, we use AdamW [26] with
a learning rate 1e-5 and 3e-4 (for Whisper and XLS-R respec-
tively) and warmup steps at 500. The remaining optimizer’s
parameters are the default. We train each model and dataset
split configuration for 100 epochs with early stopping patience
at 3 and threshold 1. We find that training converges way before
the full 100 epochs. For decoding, we use max length 225 and
we do not apply any processing steps on decoded outputs.

4.2. N-shot Learning

We perform all of our experiments with Whisper models (large-
v2 and small) as well as with XLS-R on all the publicly avail-
able Arabic ASR datasets described in Section 3. We do not find
any fully supervised or zero/few-shot model for Arabic ASR
evaluated on all these datasets to which we can compare. As
pointed out in Section 3, these datasets vary in terms of dialect,

2https://huggingface.co/docs/transformers/index
3https://github.com/openai/whisperavailable-models-and-languages
4https://www.deepspeed.ai/tutorials/zero/
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Table 1: Results on Test in Word Error Rate (WER
y ) and Character Error Rate (CER

y ) (/ separated) results for zero-shot, few-shot
(in hours), and full finetuned (last four rows) models. -: not applicable; NA: model did not converge.

Setting CV6.1 CV9.0 CV11.0 MGB-2 MGB-3 MGB-5 FLEURS

Zero-shot 15.93 / 5.69 19.2 / 6.59 19.41 / 6.76 34.74 / 17.75 43.53 / 21.87 82.97 / 49.12 11.56 / 3.74

1h 15.65 / 4.52 18.45 / 5.81 17.98 / 5.3 21.93 / 10.29 34.23 / 14.14 61.46 / 26.71 12.64 / 3.95
2h 14.27 / 4.3 16.92 / 5.05 16.55 / 4.92 25.02 / 12.57 33.26 / 14.26 59.58 / 25.76 11.32 / 3.64
4h 12.85 / 3.77 16.15 / 4.92 15.47 / 4.72 24.43 / 12.54 32.02 / 13.39 56.24 / 23.41 11.09 / 3.98
8h 12.03 / 3.5 14.89 / 4.43 14.9 / 4.59 21.69 / 11.11 - 54.98 / 22.93 -
16h 10.95 / 3.23 14.44 / 4.33 13.92 / 4.31 21.57 / 11.22 - - -

XLS-R 30.32 / 9.33 32.35 / 9.89 31.16 / 9.35 NA 55.12 / 21.06 NA NA
XLS-R-LM 21.62 / 7.19 23.4 / 7.988 22.56 / 7.55 NA 48.41 / 19.6 NA NA
WhisperSmall 22.21 / 7.09 24.61 / 7.94 24.12 / 7.93 29.66 / 14.44 49.68 / 22.48 73.98 / 33.46 23.76 / 9
WhisperLarge 10.81 / 3.24 12.97 / 4.18 13.28 / 4.23 15.49 / 8.62 31.39 / 13.25 53.82 / 22.99 10.36 / 3.3

accent, and conditions5. We perform zero-shot, and few-shot
evaluations on whisper-large-v2, and we fully fine-tune XLS-R
and whisper models (large-v2, small). For zero-shot evaluation,
we employ the processing steps stated in Section 3 on decoded
output and ground truth before computing the Word Error Rate
(WER) and Character Error Rate (CER).
Zero-shot evaluation. Whisper performs quite well in the zero-
shot setting on a wide range of speech tasks including, but not
limited to, the ASR task. We evaluate Whisper (large-v2, 1.5B)
in a zero-shot setting on all the datasets described in Section 3.
We report WER and CER on test sets. We apply preprocess-
ing techniques in two ways: (1) we apply all the preprocessing
steps mentioned in Section 3 except removing diacritics, (2) we
apply all the preprocessing steps including removing the dia-
critics. We observe that without removing the diacritics, zero-
shot results improve by almost 10 points in terms of WER/CER
across different datasets. We also observe that the difference is
quite big when we remove the diacritics, particularly for com-
mon voice datasets. Upon inspection, we observe that com-
mon voice datasets have speech based on historical textbooks
which are heavily diacritised while FLEURS and others consist
of MSA comparatively less diacritized. Zero-shot results are
stated in Table 1.
Few-shot finetuning. For few-shot finetuning, we take
whisper-large-v26 checkpoint using the same objective the orig-
inal Whisper is trained with. We split the data as per 2n, n =
0, 1.., where2n <= min(16, train). For each split, we train
Whisper independently (meaning we do not use the checkpoint
from the previous split). We apply our preprocessing steps and
use an Arabic tokenizer after processing the text. Namely, we
apply the respective tokenizer used by each tool. In the case of
XLS-R, words are split into characters while BPE is employed
in the case of Whisper. We report WER and CER on the Dev
and Test splits of each dataset. The Wav2vec2.0 XLS-R 7 model
is pretrained to learn speech representations, in contrast to the
Whisper model which is pretrained to learn transcriptions that,
unlike XLS-R, empowers Whisper to be used without any fine-
tuning. Additionally, we do not anticipate the XLS-R model to
perform well on few-shot learning, which involves training on
a small amount of labeled data. Therefore, we report only full

5we call them conditions because across the datasets not only dialect
or accent changes but other factors such as background noise, native
sampling rate, etc also vary

6https://huggingface.co/openai/whisper-large-v2
7https://huggingface.co/facebook/Wav2vec2-XLS-R-300m

finetuning for the XLS-R model. We conduct additional tests
by integrating a Kenlm-based n-gram language model 8 with
n = 3. In the case of MSA datasets, language model is gener-
ated using a combination of the training subsets of each MSA
dataset. For MGB-3 and MGB-5, only the training set of each
dataset was utilized to create a dialect-based language model.
We refer to this ASR model as XLS-R-LM.
Full finetuning (FFT). To perform full finetuning, we use the
same full training split of each dataset and apply the same pre-
processing techniques as in the zero-shot and few-shot eval-
uations. We notice that Whisper models, when compared to
the XLS-R models, exhibit superior performance across all
datasets. However, we observe that the XLS-R model with de-
fault hyperparameters fails to converge on MGB-5, likely due
to the considerable dissimilarity between the Moroccan dialect
and the MSA used to pretrain XLS-R. Moreover, we observe
that the default hyperparameters are not optimal for FLEURS
and MGB-2. This indicates that more exploration of hyperpa-
rameters is necessary. In comparison, Whisper models remain
robust and converge effectively on these datasets (with particu-
larly outstanding results achieved on the FLEURS dataset). Fur-
thermore, in terms of full finetuning, we notice that for Whisper
the results obtained across all datasets are consistently superior
to those obtained through zero-shot and few-shot evaluations (in
terms of both WER and CER). This observation highlights the
potential of full finetuning as an effective strategy for enhancing
overall performance, particularly when applied to the Whisper
architecture.

5. Results
Zero-shot results. In zero-shot evaluation, we observe that
scaling, in terms of architecture, yields better results and of-
ten is on par with the fully finetuned small model. Although it
is not a fair comparison since large-v2 is about x5 bigger than
the whisper-small. But to put things in perspective, the WER
for large-v2 on the FLEURS test set is 11.56 compared to the
fully finetuned small WER of 23.76 on the same test. From our
experiments, we notice that while whisper does quite well on
standard benchmark datasets and surprisingly even on accented
conditions such as FLEURS, it fails to generalize on dialectal
Arabic speech in a zero-shot setting. However, performance in
accented conditions needs to be scrutinized further as FLEURS
has very small evaluation sets.

8https://github.com/kpu/kenlm
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Few-shot and full finetuning results. In few-shot finetuning,
we observe that up to 4 hours of the training data yield on-par
performance compared to full finetuning in most cases. For
example, training whisper-large-v2 on 4 hours of the CV11.0
training set gives 15.47 WER compared to the full finetuned
model (which is 13.28) when full training has almost 32 hours
of speech data. When we do few-shot finetuning of Whisper
models on MGB-2 training set, we find that adding more train-
ing hours sampled from whole training may not aid in getting
better results neither on Test nor Dev sets. We hypothesize that
this is mainly due to the fact that MGB-2 training set has mul-
tiple dialectal variations. For few-shot finetuning, the sampled
data distribution (ie: dialect) may or may not be the same as
test and validation sets. This also corroborates our finding that
Whisper’s performance degrades in unseen and novel condi-
tions. Further, we finetune the XLS-R model on all the datasets
and when we incorporate a statistical language model during
decoding in XLS-R it consistently improves performance across
all datasets, resulting in a decrease of nearly 9 WER. From our
experiments, we observe that full finetuning results for the stan-
dard benchmark are close to the human baseline in terms of
WER but still far for dialectal and accented speech. For compar-
ison, training Whisper on 10.2 hours of MGB-3 obtains WER
of 53.82 while 16 hours from CV11.0 results in 13.92 WER on
respective test sets.

6. Robustness on MSA-Accented
Conditions

Whisper is trained on roughly 680, 000 hours of speech data.
Unlike general representation models such as XLS-R, Whisper
is trained to perform downstream speech tasks without any su-
pervised training. The Whisper pretraining data has roughly
17% of non-English speech including over 700 hours and 2, 300
hours of Arabic speech data for recognition and translation
tasks, respectively. It is not completely clear what all Arabic
speech datasets were included (except that we know CV9.0 and
FLEURS are part of these data). As expected, in our eval-
uation, Whisper performs quite well on CV9.0 and FLEURS
test and validation sets. Robustness of the Arabic ASR models
trained on MSA, however, have not been examined under var-
ious conditions such as dialectal and accented Arabic speech.
To fill this gap, we evaluate and further train MSA models on
dialectal and accented conditions. We first finetune Whisper-
large-v2 on CV11.0 (MSA) and evaluate it on various dialects
and accented speech. As seen in Table 2, we observe that
the fully fine-tuned MSA model (referring to Whisper-large-v2
finetuned on CV11.0) does worse on unseen dialects and ac-
cented speech than the zero-shot in almost all scenarios. For
example, the WER of the MSA model (Whisper-large-v2 fine-
tuned on CV11.0) on the MGB-3 test set is 55.31 compared
to the zero-shot WER of 31.39 on the same test set. To in-
vestigate the generalization and adaptive capability of Arabic
MSA models further on unseen dialects, accents, and condi-
tions, we adapt models (by continued finetuning) as recom-
mended by [24, 23]. We evaluate these adapted models on the
same distribution (condition) as well as again on MSA data as
a zero-shot model. We observe that the adapted model (i.e.,
Whisper-zero-shot → CV11.0 → FLEURS) is just on par or of-
ten even worse compared to the zero-shot and fully fine-tuned
model (i.e., Whisper-zero-shot → FLEURS). More specifically,
the WER on the CV11.0 test set of the MSA model finetuned on
MGB-3 (Egyptian) is 22.43 compared to the MSA model WER
of 13.28 and zero-shot WER 15.93 on the same test set.

7. Performance on Novel Dialects
To investigate robustness of Whisper on novel conditions, we
further perform zero-shot evaluation on novel dialects collected
and annotated by a group of native speakers as described in
Section 3. We report WER and CER on five novel dialects,
which we hypothesize may not have been part of Whisper train-
ing data. From our evaluation, we find that Whisper-large-v2
on standard benchmarks such as FLEURS is close to the hu-
man baseline (4% WER) in the zero-shot settings but, as shown
in Table 3, is not able to generalize well on completely novel
and unseen conditions. Upon inspecting the decoded output, we
find that the model generates random and repetitive sentences.
For example, we find the phrase �èA 	J �®Ë @ ú


	̄ @ñ»Q�� ��@ 206 times in

UAE and 152 times in Palestinian decoded output. We believe
this is a result of pretraining data leakage. While, for Palestine
and Jordan dialects, Whisper does reasonably get the best WER
although not without noise in its output. We hypothesize that
this lower WER is due to Jordan and Palestine sharing more vo-
cabulary with MSA than the other dialects. We conclude that
without finetuning, Whisper fails on all unseen dialects.

Table 2: Robustness Test. The base model of these experi-
ments is trained on CV11. Results under Dev and Test represent
WER/CER.

Adapt Dataset Dev Test

None CV11 8.69 / 2.45 13.28 / 4.23
None FLEURS 16.97 / 5.43 16.85 / 5.69

FLEURS FLEURS 10.24 / 3.02 10.16 / 3.44
FLEURS CV11 11.35 / 3.53 15.15 / 4.90

None MGB-3 53.23 / 26.97 55.31 / 28.49
MGB-3 MGB-3 31.47 / 12.52 31.59 / 13.33
MGB-3 CV11 18.16 / 5.34 22.43 / 6.91

Table 3: Statistics and evaluation results of the AraYouTube
dataset for different dialects (as an unseen condition).

Dialect Hours Segments WER/CER

Algeria 0.9 840 103.44 / 81.94
Jordan 1.20 1000 72.80 / 58.95
Palestine 1.6 1,111 51.92 / 19.42
UAE 2.37 2,000 102.83 / 83.48
Yemen 1.27 1000 102.66 / 81.26

8. Conclusion
We benchmark Whisper models on Arabic ASR for a wide
range of dialects and conditions. Our empirical investigations
allow us to observe that while Whisper is a robust and strong
n-shot learner on standard benchmark datasets, its performance
deteriorates considerably on new and unseen dialectal speech.
We also notice that an MSA finetuned model does not do well
neither on accented nor dialectal conditions compared to a zero-
shot counterpart. Further, we find that adding a language model
during decoding to a small pretrained model such as XLS-R
helps it outperform a whisper model of roughly the same size
that is trained on 7x more Arabic data. As a future direction for
our work, we intend to explore building ASR models that are
robust to new unseen dialects and conditions.
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