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Abstract
This paper investigates how intermediate speech repre-

sentations in a state-of-the-art automatic speech recognition
(ASR) system encode multi-dimensional speech quality, includ-
ing MOS, Noisiness, Coloration, Discontinuity, and Loudness.
We found that speech quality information is encoded in the ASR
encoder layers at various levels but is still much richer than
the Mel-spectrogram, an input widely used in previous works.
This discovery inspires us to develop the Attentive Conformer
with ASR pretraining, a novel deep learning model that enables
the utilization of rich information from pretrained ASR mod-
els and the ability to focus on specific layers. Experiments on
the NISQA speech quality assessment dataset demonstrate that
the proposed model achieves state-of-the-art performance with
significantly less training data.
Index Terms: Speech Quality Assessment, MOS, Speech
Recognition, Conformer, Transfer Learning

1. Introduction
Speech quality assessment is a crucial task in evaluating the per-
formance of communication systems. It is imperative to ensure
that speech transmitted over networks meets the required qual-
ity standards. While the subjective method is the most straight-
forward way to assess speech quality, it is expensive and time-
consuming, making it impractical for real-time and large-scale
systems. Objective methods have been developed to overcome
these limitations [1]. Among objective methods, single-ended
methods have gained significant attention because they do not
require a clean or reference speech signal, unlike double-ended
methods such as PESQ [2] and POLQA [3]. The use of the
double-ended method is limited because reference speech sig-
nals are usually unavailable in most realistic scenarios. There-
fore, the development of single-ended methods has become an
active research area in speech quality assessment.

In recent years, deep learning-based methods have shown
remarkable performance in single-ended speech quality assess-
ment. Various neural network architectures have been explored
with different features extracted from speech signals. For in-
stance, an autoencoder was used to extract spectrogram infor-
mation in [4], while CNN was implemented with waveform in-
put [5] or Q spectrum [6]. Furthermore, a modulation energy-
based LSTM network was proposed in [7], while a CNN and
LSTM model combination was presented in [8]. The use of
self-attention with CNN was proposed in [9]. These studies
have shown promising results in predicting speech quality and
provide valuable insights for developing effective models for
speech quality assessment.

However, the limited availability of datasets for speech
quality assessment is a significant challenge that hinders the de-

velopment of effective models in this field [9]. The process
of collecting subjective ratings is time-consuming, expensive,
and requires controlled experimental conditions, which makes
it difficult to gather a significant number of reliable and diverse
ratings. Recently, some studies proposed using self-supervised
models such as HuBERT and wav2vec2 [10, 11, 12], which
were trained on large amounts of unlabeled audio data to learn
general-purpose feature representations of speech. These mod-
els have been used as feature extractors or finetuned for speech
quality assessment, allowing for the creation of models with
high performance despite limited datasets. Despite these ben-
efits, it is noted that these models may not be optimized for
specific tasks such as speech quality assessment, and they often
require significant computational resources, which can be chal-
lenging to obtain for researchers and organizations with limited
resources. Additionally, deploying these models in resource-
constrained environments can be difficult due to their large size.

An alternative approach is to utilize pre-trained Automatic
Speech Recognition (ASR) models, which have made many ad-
vances in recent years [13]. These models can capture speech’s
complex linguistic and acoustic characteristics while having a
much smaller size than wav2vec2 and HuBERT, making them a
viable option for speech quality assessment. Furthermore, ASR
systems are trained to recognize spoken words and transcribe
them into text, requiring them to learn how to process various
aspects of speech, such as pitch, timing, and spectral features,
which are also relevant to perceived speech quality.

However, no previous research has explored the potential
of pre-trained ASR models for speech quality assessment, de-
spite their demonstrated effectiveness in several speech-related
tasks, such as accent recognition [14, 15, 16], emotion clas-
sification [17, 18, 19], speaker verification [20], and keyword
spotting [21]. This study addresses this gap by investigating
the potential of pre-trained ASR models for speech quality as-
sessment tasks. By leveraging the knowledge acquired through
ASR tasks, we believe that speech quality assessment models
can achieve high performance even with smaller datasets, mak-
ing it a cost-effective and efficient approach to developing ef-
fective models for speech quality assessment.

To obtain a state-of-the-art ASR model for analysis, we use
Conformer [13] as the core of our ASR encoder. Through prob-
ing experiments, we found that the information embedded by
different ASR encoder layers can significantly improve predic-
tion results compared to directly using Mel-spectrogram as in-
put, which has been widely used in previous works [7, 8, 22, 9].
Besides, we design a novel attention mechanism to combine
information from various ASR encoder layers into a high-
performance multitask speech quality assessment model, which
predicts not only MOS but also other subjective dimensions:
Noisiness (NOI), Coloration (COL), Discontinuity (DIS), and
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Loudness (LOUD). The comparisons with recent state-of-the-
art models NISQA [9], wav2vec2 [10] and several modern deep
learning models point out the significant improvement of our
proposal while using a smaller amount of training data.

This paper is structured as follows. Section 2 explains the
proposed speech quality assessment model and how the speech
quality information is probed from each ASR encoder layer.
The experimental results confirming the proposed approach’s
effectiveness are presented in Section 3. Finally, in Section 4,
we summarize our research findings and outline the future di-
rections for this work.

2. Proposed Method
2.1. Probing Speech Quality Information in ASR layers

Figure 1 demonstrates how we investigate MOS information in
ASR encoder layers. To explore the speech quality informa-
tion stored in ASR encoder layers, we employed an end-to-end
15-layer ASR model based on the advanced Conformer archi-
tecture [13]. The model was trained on a substantial amount
of labeled data from the Librispeech datasets [23], ensuring
its ability to gather extensive and diverse information from the
available speech samples. We then froze all its encoder lay-
ers and utilized them as a feature extractor for speech qual-
ity assessment tasks. For each layer, we pass its embedding

Figure 1: Probing speech quality information in ASR layers.

through a Fully Connected (FC) layer, an Attentive Statisti-
cal Pooling (ASP) layer, and a sigmoid function. By using
the ASP method, we obtain global information about the en-
tire utterance while paying attention to unique frames. The
mathematical formula for the proposed probing method is as
follows: Given an input embedding at the ith layer denoted
H = [h1, h2, . . . , hT ] ∈ RT×D with ht = [ht1, ht2, . . . , htD]
where T is the number of frames, and D is the embedding size,
the speech quality information is evaluated as:

h′
t = FC(ht); et = vT f(Wh′
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k=1 ek
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MOSi = 5× f1(W1x+ b1)

(1)

where v ∈ RD is the weight vector, W ∈ RD×D and W1 ∈
R2D×1 are the weight matrices, b ∈ RD and b1 ∈ R1 are
bias items, and f(.) is a non-linear activation function, such
as RELU. µ ∈ RD and σ ∈ RD are the weighted mean vector
and weighted standard deviation over all frames, respectively.

f1 is a sigmoid function. In a similar manner, we perform prob-
ing models for other speech-quality indicators: NOI, COL, DIS,
and LOUD. All probing models are trained with the same learn-
ing rate of 0.001, batch size of 16, and 200 epochs on the same
computer.

Probing experiments are conducted on four datasets, two
for training (NISQA TRAIN SIM and NISQA TRAIN LIVE)
and two for validation (NISQA VAL SIM and
NISQA VAL LIVE), sourced from the NISQA corpus [9].
The datasets NISQA TRAIN SIM and NISQA VAL SIM
were created by simulating various speech distortions, such
as packet loss and clipping, while NISQA TRAIN LIVE and
NISQA VAL LIVE consisted of live recordings with genuine
distortions like typing on a keyboard and street noise. All
datasets were annotated using ITU-T P.808 [24] with five
ratings per file. Before training and validation, the samples
were down-sampled to 16 kHz to be compatible with the
pretrained ASR model. Pearson’s correlation coefficient (PCC)
was used as the evaluation metric to measure the correlation
between predicted and subjective speech quality values.

The results, depicted in Figure 2, show the PCC between
predicted and subjective speech quality values at different en-
coder layers of the pretrained ASR model. The findings indicate
that different layers store varying amounts of information about
speech quality, with the last layers fading the speech quality
information more than the earlier layers. However, using em-
beddings from ASR encoder layers (e.g., layers 1 to 15) still
helps the model predict much better quality information than
Mel-spectrogram (layer 0), especially for the discontinuity in-
dicator. This finding indicates that speech-quality information
is well encoded in ASR encoder layers and exploring this infor-
mation could be beneficial for speech quality assessment tasks.

2.2. Proposed Speech Quality Assessment Model

The above analysis highlights the benefits of using information
stored in trained ASR encoder layers for speech quality assess-
ment tasks. However, the amount of information varies across
layers and tends to decrease in the last layers due to their de-
pendence on the ASR task. For example, some information rel-
evant to speech quality, such as noise, is suppressed in the last
layers. To reduce this dependence, we propose fine-tuning the
pretrained models rather than using them solely as feature ex-
tractors. This allows for updates to the weights in the pretrained
ASR encoder along with all the other weights in the proposed
model. Secondly, to account for the varying amount of infor-
mation stored across layers, instead of only using information
at the last layer, we recommend using the attention mechanism
on top of the ASR layers to generate a global quality score for
each speech quality indicator, as illustrated in Figure 3. Further-
more, to enhance computational efficiency, we develop a multi-
task model that predicts all indicators (MOS, NOI, COL, DIS,
and LOUD) simultaneously, sharing an encoder across tasks.

Our multitask model is trained using five constituent losses:
MOS, NOI, COL, DIS, and LOUD loss. In contrast to prior
approaches that rely on manually tuning or using equal loss
weights, we employ an uncertainty loss that uses the ho-
moscedastic uncertainty of each task to weigh multiple loss
functions, as proposed in [25]:

L =
LMOS

σ2
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+
LNOI

σ2
NOI

+
LCOL

σ2
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+
LDIS

σ2
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σ2
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+ log(σ2
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2
NOIσ

2
COLσ

2
DISσ

2
LOUD)

(2)

where σMOS , σNOI , σCOL, σDIS , and σLOUD are learnable
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Figure 2: Averaged PCC between predicted and subjective speech quality values in ASR encoder layers on two validation datasets
(NISQA VAL SIM and NISQA VAL LIVE). For layer 0, the probing model directly uses the Mel-spectrogram as input.

Figure 3: Proposed Speech Quality Assessment Model.

parameters. LA represents the Mean Squared Error (MSE)
between predicted and subjective quality values of the speech
quality indicator A, where A can take values of MOS, NOI,
COL, DIS, or LOUD.

3. Experiments
3.1. Setup

Our quality assessment model has 15 Conformer layers with an
embedding size of 320, 4 attention heads, a convolution kernel
size of 31, and other setting consistent with the medium Con-
former [13]. It has about 39.8 million parameters. The input
features are 80-dimensional Mel-spectrograms with a window
of 25 ms and a frame shift of 10 ms, normalized using cepstral
mean subtraction [26]. The model is trained for 300 epochs with
a learning rate of 0.001 and a batch size of 16.

3.2. Datasets

We adopt only two datasets which are NISQA TRAIN SIM and
NISQA TRAIN LIVE, for the training process. The validation
and testing are conducted on five datasets: NISQA VAL LIVE,
NISQA VAL SIM, NISQA TEST FOR, NISQA TEST P501,
and NISQA TEST LIVETALK. All these datasets are obtained
from the NISQA corpus [9]. The details of these datasets are
shown in Table 1.

Table 1: The description of used datasets

Datasets Source #Files Hours
NISQA TRAIN SIM AusTalk [27], TSP [28] 10,000 24.7
NISQA VAL SIM DNS Challenge [29], UK-Ireland [30] 2,500 6.0

NISQA TRAIN LIVE Live phone and Skype 1,020 2.6
NISQA VAL LIVE 200 0.5

NISQA TEST FOR Forensic speech dataset 240 0.6

NISQA TEST LIVETALK Real phone and VoIP calls 232 0.6

NISQA TEST P501 ITU-T Rec. P.501 240 0.5

3.3. Scenario

We assess the proposed model with several baselines:
• Several modern models, including ResNet34 [31] (24M pa-

rameters), ECAPA-TDNN [26] (42M parameters), and Con-
former [13] (39.8M parameters), are used as baselines.
ECAPA-TDNN was configured with a parameter approxi-
mation to our proposed model, while Resnet34 was used
with its default configuration. The residual block channels
in ResNet34 are set as {64, 128, 256, 512}, while the SE-
Res2Blocks channels in ECAPA-TDNN are {2048, 2048,
2048}. The Conformer model uses the same configuration
as the proposed model. The models are trained from scratch
without pretraining.

• Secondly, we consider two versions of a recent state-of-the-
art speech quality assessment model, NISQA [9], named
NISQA2 and NISQA59. These two versions share the
same architecture but were trained with different amounts of
training data. NISQA2 was retrained based on the official
code using only two training datasets: NISQA TRAIN LIVE
and NISQA TRAIN SIM, which contained a total of 11,020
speech files. Meanwhile, NISQA59 is the pretrained model
provided by [9], which used 72,903 speech files from two of
our training datasets and an additional 57 private datasets.

• Finally, we compare using pretrained ASR models to self-
supervised models such as wav2vec2 (95M parameters)
proposed by Cooper et al [10]. We fine-tune wav2vec2
only on two training datasets (NISQA TRAIN LIVE and
NISQA TRAIN SIM) using the same loss function as our
proposed model to ensure a fair comparison.

We utilize two criteria, Pearson’s Correlation Coefficient (PCC)
and Root Mean Squared Error (RMSE), to evaluate the perfor-
mance of the models.

3.4. Results and Discussion

The results of different models on each speech quality criterion
for the NISQA VAL SIM and NISQA VAL LIVE datasets are
presented in Tables 2 and 3. Additionally, Table 4 shows the
average PCC and RMSE of models across all speech quality
criteria for each dataset. Based on the findings in Tables 2 and
3, the Conformer model trained from scratch (row 6) outper-
forms the NISQA2 model (row 3) in terms of RMSE values on
most speech quality criteria, except NOI. However, it performs
worse in PCC values. When compared to contemporary models
such as ECAPA-TDNN and ResNet34, the trained-from-scratch
Conformer performs better in both PCC and RMSE values.

The use of pretrained ASR models leads to higher corre-
lation and less error between predicted and subjective speech
quality values, as shown in the last two rows of Tables 2, 3,
and 4. The Conformer model using the pretrained ASR model
(row 7) outperforms the trained-from-scratch Conformer model
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Table 2: PCC and RMSE of compared models on the NISQA VAL SIM dataset. Abbreviation: Attn - the proposed attention to combine
information from all pretrained layers. NISQA59 is trained on 59 datasets, while other methods are trained only on two datasets.

MOS NOI COL DIS LOUD
Model PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓
Resnet34 0.802 0.669 0.838 0.519 0.748 0.628 0.661 0.763 0.719 0.580
ECAPA-TDNN 0.796 0.689 0.849 0.509 0.740 0.638 0.643 0.791 0.735 0.573
NISQA2 0.896 0.532 0.871 0.486 0.835 0.581 0.823 0.619 0.807 0.533
wav2vec2 0.906 0.561 0.874 0.497 0.835 0.544 0.827 0.657 0.804 0.507
NISQA59 0.897 0.523 0.862 0.501 0.809 0.572 0.823 0.606 0.797 0.523

Conformer (from scratch) 0.880 0.528 0.860 0.501 0.816 0.544 0.797 0.604 0.767 0.533
Conformer (pretrained) 0.922 0.440 0.867 0.478 0.851 0.519 0.867 0.503 0.794 0.518
Conformer (pretrained) + Attn 0.927 0.458 0.878 0.477 0.860 0.523 0.881 0.496 0.799 0.527

Table 3: PCC and RMSE of compared models on the NISQA VAL LIVE dataset

MOS NOI COL DIS LOUD
Model PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓
Resnet34 0.720 0.493 0.601 0.588 0.444 0.519 0.503 0.607 0.640 0.537
ECAPA-TDNN 0.717 0.531 0.639 0.562 0.426 0.541 0.417 0.681 0.669 0.535
NISQA2 0.804 0.456 0.706 0.524 0.532 0.511 0.562 0.607 0.707 0.528
wav2vec2 0.870 0.441 0.724 0.506 0.577 0.455 0.547 0.660 0.731 0.473
NISQA59 0.822 0.401 0.723 0.550 0.566 0.454 0.542 0.604 0.728 0.492

Conformer (from scratch) 0.805 0.419 0.681 0.531 0.505 0.458 0.523 0.581 0.705 0.489
Conformer (pretrained) 0.859 0.378 0.749 0.489 0.533 0.500 0.598 0.556 0.728 0.478
Conformer (pretrained) + Attn 0.861 0.378 0.761 0.477 0.519 0.484 0.618 0.555 0.718 0.496

Table 4: Averaged PCC and RMSE over all speech quality indicators of compared models

Model NISQA VAL LIVE NISQA VAL SIM NISQA TEST FOR NISQA TEST LIVETALK NISQA TEST P501

PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓
Resnet34 0.582 0.549 0.754 0.632 0.650 0.639 0.664 0.692 0.731 0.679
ECAPA-TDNN 0.574 0.570 0.753 0.640 0.705 0.602 0.654 0.671 0.742 0.723
NISQA2 0.662 0.525 0.846 0.550 0.865 0.451 0.684 0.829 0.881 0.542
wav2vec2 0.690 0.507 0.849 0.553 0.863 0.447 0.778 0.650 0.834 0.666
NISQA59 0.676 0.500 0.838 0.545 0.866 0.528 0.702 0.725 0.877 0.409
Conformer (from scratch) 0.644 0.496 0.824 0.542 0.809 0.517 0.693 0.733 0.823 0.627
Conformer (pretrained) 0.693 0.480 0.860 0.492 0.889 0.386 0.769 0.641 0.874 0.525
Conformer (pretrained) + Attn 0.695 0.478 0.869 0.496 0.888 0.385 0.795 0.609 0.884 0.543

(row 6) in all 5 datasets, with an average relative improvement
in PCC ranging from 4.2% to 9.9% and reduced RMSE by 3.1%
to 16.3%.

Furthermore, the pretrained ASR-based Conformer model
(row 7), which used only 2 datasets, also outperforms the
NISQA59 model (row 5) trained on 59 datasets, on 4 out of
5 datasets (except NISQA TEST P501), as shown in Table 4.
This result demonstrates the effectiveness of leveraging pre-
trained ASR models to achieve state-of-the-art performance
with less training data.1

Additionally, as shown in Table 4, our approach (row 8),
which uses the proposed attention method to combine infor-
mation from all pretrained ASR layers, as described in Fig-
ure 3, exhibits superior PCC values compared to the model that
solely utilizes information at the last layer (row 7) on 4 out of 5
datasets, and comparable performance on the remaining dataset.
This serves as evidence of the efficacy of our proposed attention
method.

Besides, Table 4 also indicates that compared to finetuning
wav2vec2 (row 4), our approach (row 8) gives better PCC val-
ues on 5 out of 5 datasets. This indicates the competitiveness of
using pretrained ASR models versus pretrained self-supervised
models in speech quality assessment tasks.

Finally, to compare the inference speed of the models,
we calculate their inverse of real-time factors (RTFX) on the
NISQA VAL LIVE dataset, as shown in Table 5. The Con-
former model has the highest speed with an RTFX of 89.6,
while ResNet34 was the slowest with an RTFX of 31.9. The
ECAPA-TDNN and NISQA models have medium speeds, with

1Since these 57 additional datasets are not public, we do not re-
port the results of other models when using the same amount of data as
NISQA59.

RTFXs of 66.3 and 49.9, respectively. The wav2vec2-based
model only has an inference speed better than ResNet34. Inter-
estingly, the Conformer model has a large number of parameters
but still performs the fastest. In contrast, the ResNet34 model
has fewer parameters, yet it is the slowest among the models.
The reason may be that residual connections in its architecture
add the input of a layer to the output of a later layer, increasing
the depth of the network. Incorporating the proposed attention
method slightly reduces the speed of our proposed model, but it
remains much faster than NISQA, ECAPA-TDNN, wav2vec2,
and ResNet34.

Table 5: Inference speed of compared models on the same com-
puter using a single CPU core (Intel Xeon Gold 5218R)

Model RTFX ↑
ResNet34 31.9
ECAPA-TDNN 66.3
NISQA 49.9
wav2vec2 43.4

Conformer (from scratch) 89.6
Conformer (pretrained) 89.6
Conformer (pretrained) + Attn 70.7

4. Conclusions
In this paper, we present a novel approach that leverages
pretrained ASR models to predict multiple quality criteria in
speech quality assessment tasks. Our approach outperforms
several state-of-the-art approaches on various speech quality
criteria, despite using less training data. Additionally, we show
that the ASR encoder layers contain valuable speech-quality in-
formation, opening new opportunities for further development
in the field of speech quality assessment.

544



5. References
[1] P. C. Loizou, “Speech quality assessment,” Multimedia analysis,

processing and communications, pp. 623–654, 2011.

[2] ITU-T Recommendation P.862, “Perceptual evaluation of speech
quality (PESQ): An objective method for end-to-end speech qual-
ity assessment of narrow-band telephone networks and speech
codecs,” 2001.

[3] ITU-T Recommendation P.863, “Perceptual objective listening
quality assessment,” 2011.

[4] M. H. Soni and H. A. Patil, “Novel deep autoencoder features
for non-intrusive speech quality assessment,” in 2016 24th Euro-
pean Signal Processing Conference (EUSIPCO). IEEE, 2016,
pp. 2315–2319.

[5] A. A. Catellier and S. D. Voran, “Wawenets: A no-reference con-
volutional waveform-based approach to estimating narrowband
and wideband speech quality,” in ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 331–335.

[6] A. R. Avila, H. Gamper, C. Reddy, R. Cutler, I. Tashev, and
J. Gehrke, “Non-intrusive speech quality assessment using neural
networks,” in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 631–635.

[7] B. Cauchi, K. Siedenburg, J. F. Santos, T. H. Falk, S. Doclo, and
S. Goetze, “Non-intrusive speech quality prediction using mod-
ulation energies and LSTM-network,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 27, no. 7, pp.
1151–1163, 2019.
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R. Göcke, J. Arciuli, M. Onslow, T. Lewis, A. Butcher, and
J. Hajek, “Building an audio-visual corpus of Australian English:
large corpus collection with an economical portable and replicable
black box,” in Proc. Interspeech 2011, 2011, pp. 841–844.

[28] P. Kabal, “Tsp speech database,” McGill University, Database
Version, vol. 1, no. 0, pp. 09–02, 2002.

[29] C. K. Reddy, V. Gopal, R. Cutler, E. Beyrami, R. Cheng,
H. Dubey, S. Matusevych, R. Aichner, A. Aazami, S. Braun,
P. Rana, S. Srinivasan, and J. Gehrke, “The INTERSPEECH 2020
Deep Noise Suppression Challenge: Datasets, Subjective Testing
Framework, and Challenge Results,” in Proc. Interspeech 2020,
2020, pp. 2492–2496.

[30] I. Demirsahin, O. Kjartansson, A. Gutkin, and C. Rivera, “Open-
source multi-speaker corpora of the english accents in the british
isles,” in Proceedings of the Twelfth Language Resources and
Evaluation Conference, 2020, pp. 6532–6541.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

545


