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Abstract
Standard ways to measure child language development

from spontaneous corpora rely on detailed linguistic descrip-
tions of a language as well as exhaustive transcriptions of the
child’s speech, which today can only be done through costly
human labor. We tackle both issues by proposing (1) a new
language development metric (based on entropy) that does not
require linguistic knowledge other than having a corpus of text
in the language in question to train a language model, (2) a
method to derive this metric directly from speech based on a
smaller text-speech parallel corpus. Here, we present descrip-
tive results on an open archive including data from six English-
learning children as a proof of concept. We document that our
entropy metric documents a gradual convergence of children’s
speech towards adults’ speech as a function of age, and it also
correlates moderately with lexical and morphosyntactic mea-
sures derived from morphologically-parsed transcriptions.
The source code of the experiments is released at https://
github.com/yaya-sy/EntropyBasedCLDMetrics
Index Terms: L1 acquisition, child speech, morphosyntax,
phonetics, speech technology application

1. Introduction and related work
Children’s language production abilities undergo rapid changes
in the first three years [1]. Standard ways to measure changes
in lexical and morphosyntactic development from spontaneous
corpora tend to rely on detailed linguistic knowledge and costly
human annotations. For instance, the current best measures of
lexicon, morphosyntax, and syntax all depend on morphologi-
cally parsed, exhaustively transcribed child speech [2, 3, 4]. To
produce such annotations, one requires detailed knowledge of
the language, typically including a dictionary, a part-of-speech
parser, and a grammar, in addition to an estimated 10x of highly
trained annotators’ time to produce transcriptions of what the
child is saying.

Although undoubtedly useful in high-resource settings, we
believe continuing to rely on such measures limits our ability to
learn more about child speech production across languages and
human populations, and are likely key in explaining why fewer
than 1% of languages are represented in mainstream language
development journals [5]. Indeed, they are reliant on languages
being well-resourced. Moreover, human annotation is particu-
larly impractical for languages which are understudied and in
populations that are highly multilingual [6].

Here, in order to derive automatic measures of children lan-
guage development, we propose to leverage the power of Lan-
guage Models (LMs) trained on adult utterances to predict the
next unit. Indeed, LMs are commonly used to capture con-
textual dependencies of sequences composed of discrete units,

whether these are words, phones or discrete units derived from
raw speech. A standard way of evaluating how well a language
model is doing is to use the measure of entropy, which quanti-
fies the uncertainty of the language model, i.e., how difficult it
is to predict the next unit.

We thought entropy could track language development as
follows. Let us suppose we have a language model trained
solely on utterances spoken by adults. When children start to
speak, their utterances are qualitatively very far from that of
adults because they use sounds and combinations of sounds that
are rare in the ambient language. If we estimate the entropy
of children’s utterances using this model when children start to
speak and compare it to the entropy computed on utterances
spoken by adults, we should observe a large difference, as chil-
dren’s utterances would be more unexpected than adults’ under
the adult-trained language model. As children grow older, they
start producing strings of sounds that are closer and closer to
those adults use, not only because they come to use the same
sounds and sound combinations, but also the same words, and
eventually stringing words together as adults would do. As a
result, the entropy of the sentences uttered by children should
gradually converge towards that of adults. Thus, we can use
adults as a reference point to which children could be compared
to, theoretically allowing us to measure development regardless
of which language – or set of languages – the child is learning.

The long-term goal we set to ourselves is to borrow from
natural language processing to create a language development
metric, ideally based on raw audio, all the while being as infor-
mative as those that are extracted from costly and linguistically-
informed human transcription of children’s production. In this
paper, we present descriptive results of our efforts to describe
development in six English-learning children, whose data are
openly available, as a proof of concept, which already allows
us to establish some boundary conditions under which our pro-
posed measure behaves as predicted. Through two experiments
(Table 1), we make two key contributions: (1) a new language
development metric (based on entropy) that does not require
linguistic knowledge other than having a corpus of text in the
language in question to train a language model, (2) a method to
derive this metric directly from speech based on a smaller text-
speech parallel corpus. Together, they show that our entropy-
based metric documents a gradual convergence of children’s
speech towards adults’ speech as a function of age, and it also
correlates weakly to moderately with lexical and morphosyn-
tactic measures derived from morphologically-parsed transcrip-
tions. We close this paper by discussing how our approach may
help study individual variation among English-learning children
and in more diverse populations.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

4618 10.21437/Interspeech.2023-1569



Table 1: Model, data, and units for the relevant analyses. Training: LIBRI. stands for LibriSpeech; THOM. stands for THOMAS. Test
always drew from PROVIDENCE.

Exp. Model Model input units Train Test
1A

5-gram language model
phones LIBRI. text text

1B HUBERT-BASE discrete clusters Libri. audio speech
1C synthetic speech
2A linear regression speech (+ text entropies at training time) THOM. speech2B LIBRI.

2. Experiment 1
2.1. Model and entropy measure

In this paper, we restrict ourselves to a 5-gram language model
for the sake of interpretability. However it is only one of many
models we could have used and future work might consider
other language models. We used the fast and memory-efficient
implementation proposed in KenLM [7], which uses a modified
Kneser-Ney smoothing to assign probabilities to the unknown
ngrams.

Experiment 1A sets a baseline: the 5-gram language model
is trained on non-noisy text, an ideal condition. In a more realis-
tic condition, the model of Experiment 1B is trained on discrete
units derived from raw audio recordings of natural interactions
between the child and its mother. To better explain the results
of Experiment 1B, Experiment 1C reproduces the same experi-
ment with the same corpus but using synthetic audio data. Once
the model has been trained, we compute the entropy H of a se-
quence s = u1, u2, ..., uT composed of T discrete units u as
follows:

H(s) = − 1

T
log

[
p(u1)p(u2|u1) . . . p(uT |u1, . . . , uT−1)

]

where p is the probability assigned by the 5-gram language
model. This quantity tells us how well the model predicts the
sequence. In simple terms, we can say that entropy is lower
for higher probability, less surprising sequences. For exam-
ple, grammatical sentences will be assigned a higher probability
(i.e., lower entropy) than ungrammatical sentences.

2.2. Data

For training, we used LibriSpeech-960 [8], as it constitutes a
large dataset with both text and audio, and may be extended in
several languages, which may help future extensions [9]. We
tested on the PROVIDENCE data set [10, 11]. We chose it be-
cause it is one of the largest and best-established corpora in the
archive for child-centred recordings CHILDES, and many pre-
vious studies on child language development have employed
it. The corpus consists of 364 longitudinal recordings of 6
children, ranging from 11 months to 4 years old, recorded in
their homes and thus surrounded by their caregivers and sib-
lings. We focused on the key child (the child wearing the
recording device) and the mother, excluding speech by others.
In total, the corpus we use for testing contains 178 955 utter-
ance (≈ 161h of speech) for mothers and 112,209 utterances
(≈ 95h of speech) for key children. The key child’s speech
had been transcribed phonetically mostly, and orthographically
sometimes; the speech of mothers only orthographically. Utter-
ances have been time-stamped. Sections where speakers over-
lapped (i.e., time stamps overlapped across speakers) were re-

moved from consideration. The orthographic transcriptions,
written in the CHAT format [12], were pre-processed by remov-
ing markers specific to this format to leave only what was said
(e.g., “ma [: mommy]” becomes “ma”, removing the explana-
tion that here “ma” stands for mommy).

2.2.1. Language model inputs

Text. We used PHONEMIZER [13] to transform each utter-
ance into a string of characters, each character representing one
phoneme, removing word boundaries (since word boundaries
are not explicitly given in the speech experiments, doing so
gives us a point of comparison).
Speech. We extracted audio sections corresponding to spoken
utterances thanks to available timestamps. We discretized the
spoken utterance using a k-means clustering model (k = 500)
trained on the features of the 9th transformer layer of the second
iteration of the HUBERT-BASE [14] which is a self-supervised
speech model pre-trained on LibriSpeech-960 [8].
Synthesized speech. We used the orthographic representa-
tions to synthesize single-speaker, clean speech with a Coqui
TTS model1 trained on the LJ SPEECH data set [15] that uses
a Tacotron2 architecture [16]. For child utterances available
only in phonetic transcription, we first generated a likely ortho-
graphic transcription (e.g., [@kw2 2R@] rendered as “aqua otta”)
using PINCELATE.2 We then processed the synthesized speech
with the exact same HUBERT-BASE as just described above.

2.2.2. Comparison metrics

To benchmark our entropy measure against standard metrics of
language development, we applied CLAN’s kideval com-
mand [17] onto the child’s transcriptions from each record-
ing session. We focus on three metrics which are resource-
dependent because they require morphological transcriptions,
and yet they are the current best recommendations for mea-
suring vocabulary, morphology, and syntax, respectively [17].
These measures are vocabulary diversity (VOCD), mean length
of utterance (MLU) in morphemes, and the Index of Productive
Syntax (IPSyn). VOCD is reputedly the best measure of lexi-
cal diversity for several reasons, including its relative indepen-
dence from transcript length and the fact that lexical diversity
is done on lemmas rather than surface forms [18]. MLU mea-
sures the average length of sentences, and is thought to reflect
both morphological and syntactic development. Finally, IPSyn
measures the variability in syntactic constructions found in the
child’s speech, including categories like noun or verb phrase de-
velopment or elaboration, question/negation constructions, and
sentence phrase structure [4].

1https://www.coqui.ai/
2https://pincelate.readthedocs.io/en/latest/
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2.3. Results

Figure 1: Entropy for the key child versus the mother, as a
function of child age. Each point represents the average en-
tropy for all utterances by the key child (orange) or the mother
(black), for a given recording session. 1A=Experiment 1A on
text, 1B=Experiment 1B on speech, 1C=Experiment 1C on syn-
thetic speech, 2A=Experiment 2A on supervised entropy predic-
tion on speech.

Entropy is computed for each utterance by the key child and the
mother. Then we derive averages across all utterances for each
recording session separately. To analyze how these session-
level average entropies relate to age while acknowledging indi-
vidual variation, we fit a mixed regression model for key child
and mother separately, declaring age (subtracting minimum age,
so that the intercept corresponds to the minimum age) as fixed
and random intercepts for each child, as well as a random slope
for age within each child (Table 2).

Figure 1 presents scatterplots for the Experiment 1. More
complete information is available in Table 2. In a nutshell, our
proposed entropy metric behaved as predicted in Experiment
1A: entropies computed for adult utterances were lower than
those by the key child, particularly when the child was young,
and this difference narrowed with child age due to entropies de-
creasing for the child, but remaining stable for the adult. In ad-
dition, variation across individual transcriptions across all chil-
dren was used to see the extent to which our proposed entropy
metric correlated with well-established vocabulary, morphoyn-
stax, and syntactic metrics, all of which were calculated from
morphologically parsed transcriptions from the same record-
ings. Fitting all of our predictions, Experiment 1A operates as
a non-ideal topline for the other conditions, because although it
does not require morphological parses, it still depends on text
being transcribed.

Experiment 1B shows unexpected trends, as the child’s en-
tropy does not converge to that of the mother. This is probably
due to the noises (the background sound of the TV, the child not
speaking in front of the microphone or playing with it, etc) and
speech variability. By using synthetic speech in Experiment 1C,
we remove noises and inter- and intra-speaker speech variability
and the results show that, provided these optimal conditions, it
is possible to observe the same trend as 1A. The results reported

in Table 2 also show that our text-based entropy metric (Exper-
iment 1A) correlates well with standard language development
metrics, whereas an unsupervised LM from raw recordings (Ex-
periment 1B) speech does not.

2.4. Discussion

Results of Experiment 1 show how challenging real child-
centered data are. When using a noise-free, speaker indepen-
dent phone-based representation, a 5-gram language model re-
turned entropies that followed precisely the predicted pattern
(Experiment 1A). When this is not obtained in Experiment 1B,
it can be explained by the many differences between the two
conditions, including the fact that discrete units entering the
language model are a lot smaller: a phone is about 40ms in
duration, so a 5-gram covers about 200m, whereas a 5-gram
from speech clusters only likely covers about 50ms. Experi-
ment 1C allows us to discard many of these explanations be-
cause it uses the same speech representation model, the same
number of clusters, and the same 5-gram covering only 50ms,
and yet reproduces the predicted entropy patterns and relation to
standard language development metrics. Together, 1B and 1C
demonstrate that it is really the use of children’s voices and/or
the presence of noise in child-centered recordings that poses a
hazard for directly extracting entropy from a 5-gram language
model applied to discrete speech representations as a potential
metric for language development.

3. Experiment 2
A system like that in Experiment 1B would have been ideal, as
it could have been applied to any language and it did not rely
on any human transcription. However, that failure suggests to-
day’s speech representation models may not be equipped for
dealing with children’s voices and/or the level of background
noise found in child-centered recordings [19]. Therefore, in this
experiment, we use a layer of supervision to generate a system
that predicts entropies from text based on the information in
the audio. The hope here is that we can use some text-based
supervision, so we are not yet breaking completely free from
transcription, but at least we are limiting the amount of human
transcription and detailed linguistic knowledge (as required for
morphological parsing) that is needed to measure language de-
velopment.

3.1. Data

The model learns to predict the text entropy of a spoken ut-
terance. So, the training data is composed of paired spoken
utterances and the entropies from the text version of these
same utterances, as returned by the 5-gram language model
from Experiment 1. In Experiment 2A, the training data was
63,276 utterances (30h of speech) randomly sampled from the
THOMAS corpus [20], which is another open-source dataset in
CHILDES. It contains recordings from a single child learn-
ing British English. It was selected because speech for both
the key child and his caregivers was transcribed and accurately
time-stamped. In Experiment 2B, the training data was Lib-
riSpeech train-clean-100 (100h of speech). As in the
Experiments 1, the models were then tested on PROVIDENCE.

3.2. Model

We use WHISPER [21] as a speech features extractor, because
of reports of high performance on ASR and other downstream
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Table 2: Fit of our entropy metric to predictions. From mixed-model regressions, intercepts (Std. Error) indicate how well entropy
separates child/mother at the child’s youngest age; β age (Std. Error) indicates how entropy changes with age in the child and the
mother data. ρ CLD metric shows how entropy correlates with standard metric of language development. * indicates that the estimate
is significantly different from zero. ↓ (downwards trend) and ↔ (stable trend) show expected change with age. Negative correlations are
consistent with the notion that language development leads to higher VOCD, MLU and IPSyn, and lower (more adult-like) entropies.

Intercept (Std. Error) β age (Std. Error) ρ CLD metric
Exp. Child Mother Child ↓ Mother ↔ VOCD MLU IPSyn

1A 5.06 (0.23)* 2.97 (0.07)* −0.31 (0.06)* 0.01 (0.02) −0.23 −0.56 −0.45
1B 4.91 (0.07) 4.3 (0.11) 0.01 (0.02) 0.01 (0.04) 0.03 −0.02 −0.01
1C 3.13 (0.06) 2.83 (0.01) −0.1 (0.02) −0.01 (0.00) −0.21 −0.56 −0.54
2A 3.54 (0.04)* 3.00 (0.03)* −0.1 (0.01)* −0.02 (0.01) −0.27 −0.73 −0.53
2B 2.67 (0.01)* 2.57 (0.02)* 0.00 (0.00) 0.01 (0.01) 0.14 −0.08 −0.16

tasks, including for child-centered data [22]. The audio is first
processed through WHISPER-BASE to return a sequence of vec-
tors representing the audio. We mean-poled these vectors to
obtain a single vector c and a linear model is trained to predict
the text entropy: ê = w×c. The parameter w is estimated using
the Mean Squared Error loss function. Note that the parameters
of the WHISPER model are frozen (i.e, not updated during the
training), only w is estimated.3

3.3. Results

To facilitate comparison with Experiment 1, we provide statisti-
cal information in Table 2, but due to space limitation, we only
give the scatterplot of Experiment 2A in the Figure 1. The re-
sults of the Experiment 2A are remarkably close to the results
obtained in Experiments 1A and 1C: that suggests that, with
appropriate supervision, a system can learn to return entropies
that behave in the predicted way as a function of child age, and
that are quite similar to those obtained from the text. Except
for the VOCD, correlations with the standard language develop-
ment metrics are strong, reinforcing the idea that this approach
based on a small quantity of text-audio pairs could represent
children’s development as well as more costly full transcrip-
tions. It is also encouraging that the system generalized to a
new corpus, collected and annotated by a different researcher,
and where there was a single child learning a different dialect.
Generalization is not ensured however: Experiment 2B shows
that we need to train this system with in-domain data.

3.4. Discussion

Results from Experiment 2A suggest that we can obtain an en-
tropy metric based on the audio signal that relates to language
development with 30h of human time-stamped and transcribed
child-centered data, which importantly came from a different
corpus. The CHILDES archive [23] contains time-stamped and
transcribed child-centered data for over 40 languages (although
we do not know how many of those have 30h of speech). If Ex-
periment 2B had shown the same pattern, this would have fur-
ther allowed us to use for training adult-centered data, which is
available for many more languages. Unfortunately, the fact that
2B showed a different pattern strongly suggests that training
with in-domain data is necessary, imposing important boundary
conditions for generalization.

3We trained the models with a learning rate of 0.00056 for 5 epochs.

4. Future Directions
Many open challenges lie ahead. To begin with, we do not know
how well our metric will work in other languages. As we start
studying other languages, the “standard” metrics against which
we benchmark ours may come under attack. For instance, IP-
Syn is currently only available in English on CLAN [17], and
MLU in morphemes has been criticized in the context of lan-
guages varying in the degree of polysynthesis [24].

Regarding the usefulness of this technique to study individ-
ual variation among English learners, we would like to acknowl-
edge that we have simplified the task in several ways, some
of which are less problematic than others. For instance, our
recordings were less noisy than the increasingly common child-
centered long-form audio data [25], but we can easily imagine
many applications in which collecting short, noise-free record-
ings from a given child is feasible. We used human transcrip-
tions for some of the tasks, but Experiment 2A shows a sys-
tem trained in data from one child learning British English per-
formed well in describing our six American speakers. More
problematic is the use of human segmentation to identify spo-
ken sections, which in our experience requires 20-40x the audio
length to do accurately.

5. Conclusions
The field of language development has been dominated by the
metrics that have been proposed and developed by English-
speaking researchers living in high-resource settings, leading to
marked inequity in the publication record in terms of language
diversity [5]. This paper took a step towards developing a met-
ric that does not rely on morphological parsing, which requires
high degrees of training in human annotators and language-
specific resources. Another important advantage of our metric,
not spelled out above, is that we can employ the data from adults
in the child’s own recordings to benchmark development, which
will prove extremely useful for under-resourced languages and
multilingual populations.
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