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Abstract

Speech generation for machine dubbing adds complexity to
conventional Text-To-Speech solutions as the generated output
is required to match the expressiveness, emotion and speaking
rate of the source content. Capturing and transferring details
and variations in prosody is a challenge. We introduce phrase-
level cross-lingual prosody transfer for expressive multi-lingual
machine dubbing. The proposed phrase-level prosody trans-
fer delivers a significant 6.2% MUSHRA score increase over
a baseline with utterance-level global prosody transfer, thereby
closing the gap between the baseline and expressive human dub-
bing by 23.2%, while preserving intelligibility of the synthe-
sised speech.

Index Terms: speech synthesis, cross-lingual, prosody transfer,
multi-lingual, end-to-end, machine dubbing

1. Introduction

Prosody transfer is the ability to transfer speaking style vari-
ations and vocal performances disentangled from the spoken
content and speaker identity [1, 2, 3, 4, 5]. Many of recent pro-
posed methods utilize global-level prosody transfer. A single
embedding per utterance is used to capture prosody and to con-
dition the models to generate speech with the target prosody.
These global embeddings are either explicitly learned from
ground truth labels such as emotions [3, 6, 7] or implicitly
learned from a reference audio signal using a reference prosody
encoder [1, 2, 5], or a combination of both [4].

In this work, we focus on prosody transfer for cross-lingual
machine dubbing. We aim to generate speech for a translated
text in a target language with expressiveness and emotion of
speech from multimedia content in source language. Explo-
ration of cross-lingual prosody transfer is scarce. [7] studied
cross-lingual style transfer based on categorical labels, but this
limits transfer of a wide range of expressions and emotions
present in multimedia content. Until recently, existing work
on machine dubbing has generated speech from translated text
only, without transferring prosody [8, 9, 10]. To our best knowl-
edge, VIPT (Variational Inference for Prosody Transfer) [11] is
the only known work tackling cross-lingual prosody transfer for
machine dubbing. VIPT introduces learning of cross-lingual
prosody transfer without parallel datasets using a VITS-based
system [12] with a global reference encoder to capture vocal
performance. One limitation in using a global reference embed-
ding is that only utterance-level prosody variations are captured,
while detailed local prosody variations cannot be properly en-
coded. This potentially impacts the transfer of prosody for gen-
erating long-form utterances. Transferring local prosody vari-
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ations such as syntactic phrasing, topic emphasis and marked
tonicity is important for expressive machine dubbing [13].

In this work, we tackle the aforementioned drawback by ex-
ploring more fine-grained cross-lingual prosody transfer. Intra-
lingual fine-grained prosody control has been explored [14,
15, 16, 17] by training predictors of prosody components at
phoneme or at word level. However, prosody transfer across
different utterances at word level suffers due to word mismatch.
This applies as well to cross-lingual prosody transfer for ma-
chine dubbing, as it is unlikely to have one-to-one alignment
between words in the original and translated text. Several re-
cent works [18, 19] have proposed machine translation tech-
niques for machine dubbing allowing to generate monotonic
alignments between translated texts at the level of a prosodic
phrase, where a prosodic phrase is defined as a continuous seg-
ment of speech separated by silence regions. Therefore, in this
work we explore phrase-level cross-lingual prosody transfer for
machine dubbing.

Prosody delivery varies across languages, however the
prosody of speech expressing the same emotions is correlated
in related languages, as discussed in Section 4.6 in [20]. In our
work, we explore these cross-lingual correlations for the pur-
pose of prosody transfer. Our study is limited to European lan-
guages comprising English, German, French, Italian and Span-
ish, and focused on English-Spanish prosody transfer as a com-
mon dubbing language pair. We anticipate that more distant
language pairs such as English-Japanese exhibit less correlated
prosody features.

Our solution follows VIPT [11] in combining a VAE (Vari-
ational Auto-Encoder) prosody encoder with VITS and trains
on multimedia data without mining of parallel utterances with
matching text across different locales. We propose to capture
and to transfer phrase-level variations of prosody in a cross-
lingual setting. To achieve that, we have devised a new phrase-
level reference encoder that learns to condition the phrases of
the input text with prosody embeddings extracted from corre-
sponding parts of the reference speech waveform. We have also
introduced a novel regularization applied on prosody embed-
dings based on phrase length, to reduce content leakage from
short phrases. We discuss the details in Section 2.

We evaluate our proposed method with both MUSHRA [21]
subjective perceptual test and objective metrics including
Word Error Rate (WER) and conditional Fréchet DeepSpeech
Distance (cFDSD) [22]. We compare our method against
VIPT [11], a strong baseline for cross-lingual performance
transfer. Both subjective and objective metrics suggest that
our method improves expressiveness without compromising on
intelligibility. We also show the importance of phrase-level
conditioning in training, by comparing against a VIPT variant
trained with global-level conditioning, but transferring prosody
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at phrase-level during inference. We demonstrate a significant
6.2% MUSHRA score increase over VIPT, which closes the gap
between machine dubbing and expressive human dubbing by
23.2%. To summarize, our contributions are:

* We present a new method capable of cross-lingual phrase-
level prosody transfer for expressive multi-lingual machine
dubbing. Robust and more fine-grained transfer compared to
global-level prosody transfer improves the quality.

* We propose a length-based regularization method for fine-
grained prosody representations.

2. Method

This work extends the VIPT [11] architecture by enabling mod-
elling and cross-lingual transfer of prosody at phrase level. Fig-
ure la provides an overview of the proposed method. This
section summarizes the baseline VIPT architecture and de-
scribes the extensions that enable the modelling and cross-
lingual prosody transfer at the phrase level.

2.1. VIPT architecture

The VIPT architecture is based on conditional variational au-
toencoder with adversarial learning for end-to-end text-to-
speech (VITS) [12]. VIPT makes a number of architectural
changes to VITS. Most notably, VIPT combines VITS with
an audio reference encoder that enables cross-lingual prosody
transfer at global level. Consequently, VIPT is able to learn
the cross-lingual prosody transfer from non-parallel data. This
is possible as VIPT learns prosody representations that are ag-
nostic to speakers and languages. Such representations can be
transplanted from a reference audio in source language spoken
by a source speaker to generate speech in the target language
with the voice characteristics of a target speaker.

Furthermore, VIPT proposes a noise modelling variant of
the reference encoder that allows clean speech synthesis even
when training with noisy data and transferring prosody from
noisy reference audio, which is common in multimedia data
recorded in the field. The noise modelling variant consists of
two separate reference encoders for denoised and noise streams
obtained from the reference audio using a denoiser component
[23]. The reference encoders produce global-level denoised
prosody and noise embeddings. These embeddings are then
concatenated and broadcasted to phoneme-level in a prior en-
coder module. The VIPT architecture is analogous to ours
shown in Figure la, but with a single global-level embedding
per reference encoder instead of phrase-level embeddings.

Finally, VIPT adapts a number of additional changes from
the literature to the base VITS model. First, VIPT replaces
VITS’s monotonic alignment search algorithm with an explicit
duration predictor and extends the prior encoder module with a
frame prior network as in [24]. Second, VIPT adds speaker em-
beddings and language embeddings as in [25]. Lastly, VIPT re-
places HiFiGAN decoder [26] with a BigVGAN-based decoder
[27]. We keep these components as in VIPT.

2.2. Phrase-level cross-lingual prosody transfer

We extend VIPT by enabling cross-lingual transfer of prosody
at phrase level. The global-level reference encoder in VIPT
may not sufficiently transfer the prosody variations present in
expressive multimedia speech, especially when a dialogue line
consists of several short phrases. Capturing prosody variations
consequently requires more fine-grained representations. Word-
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level prosody representations are challenging to transfer in a
cross-lingual setting due to lack of monotonic word correspon-
dence between translated texts. Instead, we propose prosodic
phrases as a level of granularity for cross-lingual prosody trans-
fer. We show experimentally that prosodic phrases are able to
capture local variations in prosody which can be robustly trans-
ferred between speech in different languages. At the same time,
prosodic phrases can be automatically aligned across translated
texts using recently developed prosodic alignment techniques
for machine dubbing [18, 19].

2.2.1. Phrase-level reference encoder

We adopt the definition of prosodic phrases from [18, 19] as
continuous speech segments separated by silences. The silences
are extracted by force aligning reference audio and text using an
external aligner, such as the Gaussian Mixture Model (GMM)
based Kaldi Speech Recognition Toolkit [28] used in our exper-
iments. We treat the silence regions as part of preceding speech
phrases. Each speech phrase is encoded into a single prosody
embedding using a reference encoder described below. See Fig-
ure 1b for an illustration of this approach.

We propose a phrase-level reference encoder architecture
that extracts frame-level embeddings from a linear spectro-
gram and downsamples the frame-level embeddings to the
phrase-level. We base our reference encoder architecture on
that from VIPT, but with changes to keep one-to-one frame-
embedding correspondence before downsampling to the phrase-
level. Namely, our architecture consists of five convolutional
layers with channel size of 512, a kernel size of three and stride
of one, followed by one bi-directional LSTM layer with channel
size of 512. The frame-level outputs of the bi-directional LSTM
are then downsampled by selecting the middle embedding per
phrase. We experimented with other forms of downsampling
(e.g. mean of frames per phrase), but did not observe significant
differences. The phrase-level embeddings are then further pro-
cessed by a fully connected layer that outputs a parameteriza-
tion of a 32-dimensional diagonal Gaussian distribution, which
is regularized using Kullback-Leibler Divergence (KLD) with
a standard Gaussian A/ (0, I). The final phrase embeddings are
sampled from this Gaussian.

2.2.2. Length-based regularization

We propose a length-based regularization of phrase-level
prosody embeddings to reduce content leakage when transplant-
ing prosody embeddings across languages. As we have ob-
served content leakage for short phrases, we added a length-
based regularization as following:

_ i —BLy,
Lrrpy = 3 ke%:me KLD(hg, N(0,1)) (1)

where K is the total number of phrases in one utterance, Ly, is
length of phrase k defined as the number of phonemes, S is a
constant hyper-parameter controlling how much L, affects the
scaling factor e “AL* | b is the prosody embedding distribution
of the k" phrase. This formulation applies stronger regulariza-
tion to the embeddings of short phrases, thus preventing them
from carrying content information that should only be obtained
from the text prior. We show experimentally that the proposed
regularization improves the intelligibility of synthesised speech
for short phrases in Table 2.
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Figure 1: Overview of the proposed system architecture and phrase-level reference encoder.

2.2.3. Noise modelling at phrase-level

We apply the noise modelling approach from VIPT in the con-
text of the phrase-level reference encoder. Specifically, the ref-
erence audio is passed to a denoising component [23] to extract
denoised and noise streams. The two streams are then used as
inputs to two separate phrase-level reference encoders with the
architecture described in subsection 2.2.1. The reference en-
coders output phrase-level denoised prosody and noise embed-
dings that are concatenated, upsampled to the phoneme level
and used as conditioning in the text encoder.

During inference, we extract a clean noise embedding from
a static clean audio similarly to VIPT. However, we make sure
to use a clean audio, which contains exactly one phrase, so that
it is feasible to upsample this single clean noise embedding to
match the number of the per-phrase prosody embeddings ex-
tracted from the denoised reference audio.

2.2.4. Alignment of phrase-level audio reference embeddings
to target text phonemes

We aim to transfer prosody from phrases of reference speech
to corresponding phrases in the translated target text to be syn-
thesised. More precisely, we concatenate phrase embeddings
extracted from the reference audio with encoded phonemes cor-
responding to a given phrase in the target text. To achieve this,
we need a mapping between reference audio phrases and target
text phonemes. See the illustration in Figure 1b.

During training, the reference audio and the text to be syn-
thesised correspond to each other. This allows us to force align
the audio and the text phonemes to compute frame-phoneme
correspondences. During inference, when performing cross-
lingual prosody transfer, the reference audio contains speech in
a language different from the translated text to be synthesised.
Therefore, in such case we cannot align the audio and the text
as in training. Instead, we need to insert phrase breaks into the
translated text to obtain a monotonic one-to-one alignment be-
tween the phrases in the audio and the text. Such alignments can
be automatically generated using recently developed prosodic
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alignment techniques for machine dubbing [18, 19]. However,
the focus of this work is on evaluating the quality of prosody
transfer, and thus we assume the prosodic alignment is given.

3. Experiments
3.1. Training setup

Our training setup largely follows that of VIPT [11] by up-
dating the KLD regularization for prosody £prosodyxrp and
noise L noisek 10 reference encoders with the phrase-level for-
mulation and the length-based scaling coefficients 3 described
in Section 2.2.2. The final loss can be formulated as:

L = Lvirs + 01 Lprosodyk LDy, + 2L NoiseKLDg, (2)

where Ly r7s represents the VITS loss terms with replaced ad-
versarial components as in BigVGAN [27]. We performed nine
runs of hyperparameter search and set the KLD loss coefficient
« and the length-based KL.D loss scaling coefficient 5 for both
the prosody and the noise reference encoder as a; = a2 = 0.04
(other tested values: 0.02 and 0.08) and 51 = B2 = 0.08 (other
tested values: 0.02 and 0.04) respectively. We trained using
mixed precision on 8 NVIDIA V100 GPUs, with a batch size
of 30 per GPU, and used AdamW optimizer [29]. We trained
the model for 600 epochs. The generative part of our proposed
model and discriminators have 100 million and 47 million pa-
rameters respectively.

3.2. Data

We used an internal multimedia dataset from which we extract
multi-speaker multi-lingual dialogues resulting in 598 hours of
speech from 134 female and 162 male speakers in 5 different
locales; namely US English, Castilian Spanish, French, German
and Italian. Speaker age groups range from children to elderly.

The speech data is resampled to 24 kHz and normalized in
terms of loudness. Silences longer than 2 seconds are trimmed.
We split the dialogues into separate phrases based on silences
of at least 50 milliseconds.



3.3. Evaluated systems

We evaluated the proposed method against human Spanish
dubs and two baseline models. We denote our method as
Variational Inference for Prosody Transfer with Noise Mod-
elling and Phrase-level Variational Auto-Encoder (VIPT-NM-
PVAE). VIPT-NM-GVAE is a strong baseline for cross-lingual
performance transfer with global-level reference encoder (cor-
responding to VIPT-NM-Transfer model from [11]). Addi-
tionally, we introduce a second baseline named VIPT-NM-
GVAE-PP, which uses the same model architecture as VIPT-
NM-GVAE during training, but at inference time it computes
prosody embeddings per phrase (PP). Namely, during inference,
the VIPT-NM-GVAE-PP model passes parts of the source audio
corresponding to each of the K phrases separately through the
global-level reference encoder to extract the K phrase-level em-
beddings. We include this baseline to evaluate the importance
of training phrase-level embeddings.

% ? L s o
]
60
: Y H |
40 * X 1
20
Recording VIPT-NM-GVAE VIPT-NM-GVAE-PP VIPT-NM-PVAE
(85.10+0.28)  (67.10+0.32)  (67.67+0.32)  (71.28+0.31)

Figure 2: Subjective listeners ratings from the machine dubbing
MUSHRA test. Values under labels represent mean scores and
their respective standard errors.

Table 1: Subjective evaluation MUSHRA mean scores reported
separately for single-phrase and multi-phrase utterances.

System _ MUSHRA t _
single-phrase multi-phrase
VIPT-NM-GVAE 69.58 +0.40 63.21 +0.52
VIPT-NM-GVAE-PP  69.81 +0.39 64.32 +£0.53
VIPT-NM-PVAE 74.31+0.36 66.56+0.53
Recording 83.75+0.38 87.22+0.40

3.4. Subjective Evaluation

For the evaluation of cross-lingual prosody transfer, we per-
formed a MUSHRA test on a held-out subset of 100 parallel
utterances between US English and Castilian Spanish. To pro-
vide testers context for the assessment of prosody match, all
audio samples were overlaid on the corresponding videos. 25
bi-lingual test subjects native in Castilian Spanish and fluent in
English were presented with the video samples in a random or-
der side-by-side. The test subjects were tasked to “Rate the vo-
cal performance in the Spanish video dubbing samples with re-
spect to the English reference video”. Each test case was scored
by all 25 testers independently.

Evaluation results are summarized in Figure 2 and show
that VIPT-NM-PVAE achieved a statistically significant 6.2%
MUSHRA score increase over VIPT-NM-GVAE baseline sys-
tem, which closes the gap to human dubbing by 23.2%. In-
spection of evaluators ratings suggests that the improvement in
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VIPT-NM-PVAE results from increased expressiveness of gen-
erated speech and more accurate prosody transfer. There is
significant difference in MUSHRA scores between VIPT-NM-
PVAE and both baseline models for multi-phrase utterances,
and for single-phrase utterances (Table 1). We hypothesize that
training with the proposed phrase-level reference encoder may
lead to increased sensitivity to the prosody embedding.

Table 2: Objective metrics: word error rate (WER) and condi-
tional Fréchet DeepSpeech Distance (cFDSD) [22].

WER |

System cFDSD | all shortest 25%
VIPT-NM-GVAE 0.297 0.098 0.169
VIPT-NM-GVAE-PP  0.288 0.094 0.155
VIPT-NM-PVAE 0.224 0.101 0.161
w/o length-based reg.  0.241 0.106 0.229

3.5. Objective Metrics

To quantify stability of tested systems and intelligibility of syn-
thesised speech we conducted Word Error Rate (WER) analy-
sis. The results are reported in Table 2 for a held-out test set
of 1200 parallel utterances. First, all generated audio files were
transcribed with a Whisper Large [30] ASR model. Then, WER
scores were computed between sentence texts and correspond-
ing transcriptions. We have observed no significant stability is-
sues with the VIPT-NM-PVAE model, which backs up our con-
clusion that phrase-level modelling allows for more expressive
and accurate cross-lingual prosody transfer without compromis-
ing intelligibility.

For all tested systems we also computed the conditional
Fréchet DeepSpeech Distance (cFDSD) [22], an objective met-
ric measuring the quality of synthesised audio samples based
on their distance to a reference set. We closely follow [22] in
our implementation of the cFDSD metric, only differing in us-
ing XLSR-53 Large [31] as a backbone network, which was
trained on multi-lingual speech data. All tested systems are
compared to human Spanish dubs. We observe that VIPT-NM-
PVAE has a significantly lower distance to the human dubs (Ta-
ble 2) compared to all other models. This result is inline with
the MUSHRA subjective evaluation scores.

Finally, as an ablation study, we trained a VIPT-NM-PVAE
model without the length-based regularization described in Sec-
tion 2.2.2. This resulted in a significant WER increase for short
utterances (Table 2), while at the same time cFDSD distance
to recordings also increased. We conclude that applying regu-
larization dependent on phrase lengths is crucial to find a good
balance between expressivity and stability of our system.

4. Conclusions

We have presented a novel solution that enables phrase-level
cross-lingual, cross-speaker prosody transfer for expressive ma-
chine dubbing. The proposed method can learn to model
prosody information at phrase-level, and transfer the phrase
prosody embeddings from a source to a target language for
translated text. In subjective evaluations, our system outper-
forms a strong baseline that transfers prosody at global-level. In
future work, we plan to extend our evaluation to include wider
range of languages and further close the gap between synthe-
sised speech and expressive human dialogues by exploring du-
ration modelling, hierarchical prosody modelling and the usage
of parallel data.
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