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Abstract

Prosody transfer is well-studied in the context of expressive
speech synthesis. Cross-lingual prosody transfer, however, is
challenging and has been under-explored to date. In this paper,
we present a novel solution to learn prosody representations that
are transferable across languages and speakers for machine dub-
bing of expressive multimedia contents. Multimedia contents
often contain field recordings. To enable prosody transfer from
noisy audios, we introduce a novel noise modelling module that
disentangles noise conditioning from prosody conditioning, and
thereby gains independent control of noise levels in the synthe-
sised speech. We augment noisy training data with clean data
to improve the ability of the model to map the denoised refer-
ence audio to clean speech. Our proposed system can generate
speech with context-matching prosody and closes the gap be-
tween a strong baseline and human expressive dialogs by 11.2%
Index Terms: speech synthesis, text-to-speech, prosody trans-
fer, cross-lingual, noise-robust, automatic dubbing

1. Introduction

Intonation, stress, rhythm and style are factors of speech that
are collectively referred to as prosody. To study and apply these
factors for the purpose of speech generation, various acousti-
cally inspired labelling schemes have been designed. In [1],
the transplantation of prosody from an original speech clip via
a system called PROTRAN was proposed. This technique in-
volves an encoding of stylized pitch-contours and phoneme du-
rations into a low bit-rate enriched phonetic transcription that
can be used in conjunction with desired text to reproduce the
prosody of an original recording. In our work, we circumvent
the labour intensive schematizing and labeling of prosody. We
adopt the term prosody as a general term that constitutes learned
latent representations from ground truth speech audios. Similar
to the definition in [2], prosody in this work refers to the encod-
ing of variations in speech signal that remains after accounting
for the variations due to phonetics, language, speaker identity,
and channel effects (i.e. the recording environment and ambient
noise).

In this work, we focus on cross-lingual speech synthesis
for machine dubbing where the content in a source language is
translated and converted into speech in a target language. Ex-
isting speech synthesis methods in machine dubbing [3, 4, 5]
generate speech only based on translated text, but do not model
nor transfer the expression of corresponding speech in the orig-
inal language. For machine dubbing of expressive multimedia
contents such as videos from various sources, it is important
to convey the same emotion and expression as in the original
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speech [6]. In this paper, we explore cross-lingual prosody
transfer for expressive speech synthesis of multimedia con-
tents. We define cross-lingual prosody transfer as the transfer of
prosody representations from speech in a source language from
a source speaker to generate speech in a target language with
voice characteristics of a target speaker. While exact prosody
delivery varies across languages, the prosody of speech ex-
pressing the same emotions in related languages exhibits highly
correlated prosody, as discussed in Section 4.6 in [6]. In our
work, we explore these cross-lingual correlations for the pur-
pose of prosody transfer. We study European languages such
as English, German, French, Italian and Spanish, and focus on
English-Spanish prosody transfer. In this work, we do not focus
on more distant languages such as Japanese.

Cross-lingual prosody transfer brings additional context
from speech in source language, but it also involves a number of
challenges that are not present in conventional Text-To-Speech
(TTS) solutions. First, currently cross-lingual prosody transfer
has to be learned without access to multilingual parallel speech
datasets due to the scarcity of such datasets. The available
parallel datasets [7] lack expressivity. The absence of expres-
sive parallel datasets also means speech-to-speech translation
methods [8] are not applicable. Second, available non-parallel
speech datasets lack the full range of expressivity present in hu-
man speech [9]. Therefore, we resort to gathering expressive
speech of different languages and speakers from in-house mul-
timedia data. However, such data was not recorded for the pur-
pose of TTS systems. For example, the data contains channel
noise, which needs to be alleviated to generate clean and ex-
pressive speech.

In this work, we introduce a solution based on conditional
variational autoencoder with adversarial learning for end-to-end
text-to-speech (VITS) [10]. Our solution learns cross-lingual
prosody transfer from non-parallel data. We use parallel trans-
lated texts during inference, but our proposed system doesn’t
require parallel text nor parallel audio data during training. It
enables the cross-lingual prosody transfer by learning prosody
representations that are agnostic to speakers and languages.
The prosody representations are learnt via a variational refer-
ence encoder [11] with carefully balanced regularization. The
learnt representations can be transplanted from a reference au-
dio in source language spoken by a source speaker to gener-
ate speech in target language with the voice characteristics of
a target speaker. Furthermore, to improve the robustness of
our model to noisy reference audio, we propose two different
approaches. The first approach utilizes a noise modelling ex-
tension to our reference encoder module that disentangles the
prosody and the channel noise, where a denoised signal ex-
tracted from a reference audio is utilized. On the other hand, in
the second approach, we augment the training data with clean
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Figure 1: Architecture diagram of the main system with prosody reference encoder (left) and explicit noise modelling method utilizing

both prosody and noise reference encoders. (right).

speech data to improve the capability of our model to map a de-
noised reference audio to clean speech. Both approaches allow
our system to learn from noisy data and to generate high-quality
clean speech in a target language even when it is provided with
a noisy reference audio from the source language.

Related to our system, numerous works on the prosody
transfer within a single language have been proposed, such as
with the use of reference encoder [12], with style tokens [13],
or with variational autoencoder (VAE) [11]. Concurrent to our
work, [14] also extended VITS with a reference encoder. Cross-
lingual setting was explored in [15], however, this work is fo-
cused on style transfer based on categorical labels, which are
provided as ground truth during training. Last but not least,
explicit noise modelling in TTS systems has also been studied
[16, 17], but transferring prosody from noisy reference record-
ings was not explored in these studies. To the best of our knowl-
edge, our work is the first to address the problem of cross-
lingual prosody transfer for machine dubbing and is robust to
noisy data. To sum up, our contributions are:

¢ We show that cross-lingual prosody transfer can be achieved
with a multilingual model trained without parallel data.

* We propose a reference encoder architecture that disentan-
gles prosody and channel noise allowing for clean speech
synthesis from a noisy reference audio. We also investigate
the augmentation of noisy data with clean training data to im-
prove the capability of the model to map a denoised reference
input to clean speech.

2. Modelling

Our proposed model consists of a backbone adapted from
VITS [10], a prosody reference encoder to encode prosody in-
formation from the reference audio, and an optional noise refer-
ence encoder to model noise information. Figure 1 (left) shows
an overview of our proposed model architecture.

We derive our base model by adapting the following
changes from the literature. First, we replace VITS’s monotonic
alignment search algorithm with explicit duration predictor and
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extend prior encoder module with a frame prior network as in
[18]. Second, we incorporate speaker embeddings and language
embeddings as in [19] for training on multi-speaker and multi-
lingual datasets. This is also depicted in Figure 1. Finally, we
replace HiIFIGAN decoder [20] with a BigVGAN-base decoder
[21] as BigVGAN shows improved generalization performance
compared to HiFIGAN. We find that these changes significantly
improve over the original VITS and keep them fixed in all our
experiments.

2.1. Prosody Encoder

The prosody reference encoder extracts prosody embedding
from a reference speech input. As we explicitly condition
speaker and language variations via respective embeddings, the
prosody encoder captures the remaining variability related to
prosody. The prosody embedding is used to condition the
model to synthesise speech with similar prosody to the refer-
ence speech sample. Formally, the prosody reference encoder
can be represented as a function h that encodes speech repre-
sentation s into prosody embedding ¢ as e = h(s). We can
either use the output of posterior encoder or the extracted linear
spectrogram as speech representation s. In our experiments, we
find both to have similar performances.

In practice, the reference encoder h is parameterized by a
variational encoder module that consists of five convolutional
layers of 512 channel size and a kernel size of 3, and one bi-
directional LSTM layer of channel size 512. The cell states of
LSTM layer is then further processed by two fully connected
layers that output the parameterized diagonal Gaussian distri-
bution, that is regularized using KL-Divergence with a standard
Gaussian N'(0, ). The variational Bayesian formulation has
two advantages. First, this formulation allows interpolable em-
bedding space, which is conducive for the sampling of prosody.
Secondly, carefully tuned KLD regularizes the prosody em-
bedding to reduce speaker and language information contained
within the embedding, which is essential for cross-speaker and
cross-lingual prosody transfer.

We experimented with various ways of conditioning the



model on extracted prosody embedding and found that condi-
tioning in the text encoder module (Figure 1) produces the best
result. Intuitively, conditioning in the text encoder allows a joint
modelling P(c, e) of the text embedding c and the prosody em-
bedding e, which makes it possible to model long-term depen-
dencies between text sequence and prosody embedding. We de-
note this system as Variational Inference for Prosody Transfer
(VIPT).

2.2. Noise Modelling

The prosody encoder, designed to encode the prosody of the ref-
erence audio, also encodes other artifacts such as background
noise and distant speech not annotated in the text. In our empir-
ical study, we found that the presence of these artifacts severely
degrades the quality of speech synthesis. We propose two ap-
proaches to tackle this issue.

In the first approach, we introduce an explicit noise mod-
elling method (Figure 1, right) to our system, which enables
to disentangle the prosodic information from the noise infor-
mation. As a result, clean speech audio can be generated even
when a noisy reference audio is provided. At training time, we
use an external denoiser [22] to split reference audio into de-
noised waveform and noise residual waveform. We feed the
spectrograms extracted from the two audio streams into sepa-
rate reference encoders resulting in two disentangled embed-
dings: a prosody embedding from denoised audio and a noise
embedding from the noise residual. Finally, we concatenate the
prosody and noise embeddings to condition the text encoder as
described in Section 2.1. In this way, a mapping from the noise
embedding to noise artifacts contained in the target waveform
is learnt. At inference time, the prosody embedding is extracted
from a given denoised reference audio containing the desired
prosody, while the noise embedding is derived from a separate
clean utterance. We denote this system as Variational Inference
for Prosody Transfer with Noise Modelling (VIPT-NM).

In the second approach, we use the base VIPT architecture,
but input the denoised reference audio during inference time.
This approach is able to reduce the noise level in the synthe-
sised speech, but may also introduce distortions due to unseen
denoised reference audio input that are out of training data dis-
tribution. To remedy this, we add clean data as a proxy for de-
noised audio to our dataset and train our model with both noisy
data and clean data. In this way, the out-of-distribution con-
dition of the denoised reference audio is alleviated, which, in
turns, improves the synthesis quality.

2.3. Training Setup

We follow the training setup of original VITS [10], where we
include the use of short-term Fourier transform (STFT) discrim-
inator as in BigVGAN [21]. The final loss can be expressed as
follows:

ey

where Ly rrs represents the VITS loss terms except with
the adversarial loss changed to the BigVGAN’s formulation.
Lprosodyk LD and Lnoiserr L p are KLD losses for prosody and
noise reference encoders respectively. After hyper-parameter
search of 12 runs, we found the best KL-Divergence loss coef-
ficients a1 and a2 to be both 0.001. We use mixed precision
training on eight NVIDIA V100 GPUs. The batch size is set to
30 per GPU and the models are trained up to 700k steps. The
generative part of the VIPT-transfer model has a total of 90 mil-
lion parameters and discriminators have 47 million parameters.

L= Lvrirs + 01LProsodyk LD + 2L NoiseKLD
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Figure 2: Subjective listeners ratings from the machine dubbing
MUSHRA test for VIPT and VIPT-NM. Values under labels rep-
resent mean scores and their respective standard errors.

3. Evaluations

We used an internal multi-speaker multilingual dataset mined
from existing in-house multimedia source data that contains ex-
pressive speech recorded in varying acoustic conditions. The
dataset comprises 118 hours of speech recordings from 127
speakers in five different locales; namely US English, Castil-
ian Spanish, French, German and Italian. Speaker age groups
range from children to elderly. We split data into training, de-
velopment, and test sets using a 85:5:10 ratio. For the evaluation
of cross-lingual prosody transfer, we ran MUSHRA tests on a
held-out subset of 100 US English utterances with expressive
human dubbing in Castilian Spanish. For the subjective evalua-
tion, for the sake of brevity, we focus on prosody transfer from
US English to Castilian Spanish as a representative of other lan-
guage combinations. Our proposed method also works for other
language pairs, and we briefly discuss objective metrics evalu-
ation for the other language pairs in Section 3.3. In order to
provide testers with a precise context for prosody assessment,
we presented the audio samples overlaid on the corresponding
videos. We evaluated four systems:

» VIPT-Centroid - We aim to pick a baseline model that gener-
ates high quality speech, but does not have prosody trans-
fer capability. We introduce VIPT-Centroid, which is the
same as VIPT model, but uses the centroid of prosody em-
beddings calculated across denoised reference samples for
the target speaker. VIPT-Centroid is a stronger baseline than
other VITS-based external models such as YourTTS [23], be-
cause those models, without a reference encoder, tend to in-
ternalize the noise into the model parameters and frequently
generate noisy speech with higher rate of mispronunciations.
To illustrate this, we measured Signal-to-Noise Ratio (SNR)
of VIPT-Centroid and YourTTS outputs by using the same
denoiser as used in Section 2.2. VIPT-Centroid has a SNR of
45.2 dB, which is significantly higher than YourTTS’s SNR
ratio of 34.8 dB.

* VIPT-Transfer - As above but with the prosody embed-
ding extracted from the denoised audio of a source English
speaker.

e VIPT-NM-Transfer - As above but with explicit noise mod-
elling applied.

* Recording - Professional human Spanish dubbing.

In the MUSHRA test, 25 native Spanish speakers were pre-
sented with the video samples in a random order side-by-side,
and were asked to “Rate the vocal performance in the Span-
ish video dubbing samples with respect to the English reference
video”. Each test case was scored by all 25 testers indepen-
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Figure 3: Subjective listeners ratings from the cross-lingual
prosody transfer MUSHRA test for VIPT-Transfer with addi-
tional clean training data. Values under labels represent mean
scores and their respective standard errors.

dently.

3.1. Perceptual Metrics

Figure 2 shows that while VIPT-Transfer on average achieved
lower MUSHRA scores than the baseline VIPT-Centroid, VIPT-
NM-Transfer was significantly better. On closer inspection, we
observed that the VIPT-Transfer system scored lowest for utter-
ances with particularly noisy English reference audios, thereby
dragging down the mean score despite of its capability to per-
form prosody transfer. VIPT-NM-Transfer was more robust to
the negative impact of the noise in reference audio and resulted
in better matching prosody than the baseline VIPT-Centroid,
thereby achieved a statistically significant MUSHRA score in-
crease and closed the gap to human dubbing by 11.2%.

Additionally, we evaluated the effects of adding clean data
to improve the synthesis quality when using denoised reference
audio. For model training, we added 480 hours of internal clean
speech data that consists of 183 additional speakers within the
same 5 locales as the original data. Similarly as before, on the
cross-lingual prosody transfer from English to Spanish, we used
denoised English reference audio to condition the prosody en-
coder for synthesising Spanish speech with the desired prosody.
For the perceptual metric evaluation, we conducted a MUSHRA
test with the same setup as above. Figure 3 shows the MUSHRA
scores of VIPT-Transfer compared to VIPT-Centroid. The im-
proved score of VIPT-Transfer shows that adding clean data
allowed us to effectively use a denoised reference audio for
performing cross-lingual prosody transfer without a significant
compromise in terms of the stability.

3.2. Analysis of Prosody Embedding Space

Cross-lingual prosody transfer should only transfer the prosody
but not language specific accents to the target language. This
requires the prosody embedding space to be disentangled from
language categories. In order to verify this and to further un-
derstand the learnt VAE reference encoder embedding space,
we used t-SNE to reduce dimensions of the embedding space to
R? and plotted randomly sampled embedding using a colored
scatter plot. The embedding was taken from the output mean
predicted from the reference encoder for the corresponding ref-
erence sample.

Figure 4 depicts t-SNE plots of randomly sampled utter-
ances’ prosody embedding from five different locales in our
dataset with 600 utterances per locale. It can be observed that
there is no significant locale clustering, which indicates that the
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Figure 4: T-SNE plot of VAE reference encoder embedding
space coloured by languages.

learnt reference embedding space was locale/language indepen-
dent. This local-independent prosody distribution is essential
for performing cross-lingual prosody transfer.

3.3. Objective Metrics For Other Language Pairs

In this section, we discuss objective metrics evaluation for lan-
guage pairs other than US English and Castilian Spanish. As
metric of measure prosody transfer, we focus on FO statistics
including Mean Squared Error (MSE) and Pearson correlation
between synthesised speech and the corresponding Spanish hu-
man dubs. In Table 1 FO objective metrics are computed for
an external baseline YourTTS [23], and VIPT-Transfer different
language pairs on the same test set used for the MUSHRA eval-
uation. It can be seen that VIPT-Transfer for any included lan-
guage pair outperforms YourTTS in terms of FO metrics, which
indicates that our proposed method works for more than one
language pair. The VIPT-Transfer-En-To-Es system gives the
best scores for both metrics, which we hypothesise is due to
higher proportion of English utterances in our training data.

Table 1: FO Metrics comparing an external baseline
YourTTS [23] and our VIPT-Transfer model with prosody trans-
fer for different language pairs. Mean Squared Error (MSE)
and correlation coefficient are computed against corresponding
human Spanish recordings.

System MSE | Correlation 1
YourTTS 8367.7 0.30
VIPT-Transfer-En-To-Es  6970.0 0.40
VIPT-Transfer-It-To-Es 7639.2 0.35
VIPT-Transfer-Fr-To-Es ~ 7724.7 0.33
VIPT-Transfer-De-To-Es ~ 7693.4 0.34

4. Conclusions

We presented a novel solution that learns cross-lingual prosody
transfer from non-parallel noisy speech data. We showed that
our proposed solution can generate dubbed speech with context-
matching prosody. We further demonstrated two approaches to
address challenges posed by noise in multimedia data. First, we
introduced a novel noise modelling module that disentangles
noise from prosody, where denoised signal extracted from ref-
erence audio is utilized. Second, we augment noisy data with
clean training data to improve the capability of the model to
map denoised reference audio to clean speech. Through subjec-
tive and objective evaluations we showed that our system out-
performs a strong baseline in the task of speech generation for
automatic dubbing.
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