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Abstract
Dialog history enhances downstream classification performance
in both speech and text based dialog systems. However, there
still exists a gap in dialog history integration in a fully end-
to-end (E2E) spoken dialog system (SDS) versus a textual dia-
log system. Text-based dialog systems use large language mod-
els (LLMs) to encode long-range dependencies by attending to
the entire conversation as a contiguous token sequence. This
is not possible in an E2E SDS, as speech sequences can be
intractably long. We propose a convolution subsampling ap-
proach to make the speech sequence of a conversation tractable
and use a conformer to attend to the speech-based conversa-
tion in a fine-grained manner. This model is further enhanced
via a conversation-level knowledge transfer from a LLM us-
ing a token-level alignment strategy. Finetuning the E2E model
pretrained this way gives significant gains, of up to 8%, over
strong non-contextual baselines in the E2E dialog act classifi-
cation task on two datasets.
Index Terms: speech understanding, spoken dialog systems,
knowledge transfer

1. Introduction
In recent years, there has been a surge in the popularity of
end-to-end (E2E) spoken language understanding (SLU), due
to advancements made in building robust speech processing
models, speech representation learning [1, 2, 3] and techniques
for knowledge transfer from large language models (LLMs)
[4, 5, 6], like BERT [7], into speech encoders. Unlike the tradi-
tional approach of using automatic speech recognition (ASR) in
combination with natural language understanding (NLU) mod-
els, an E2E model is more compact and robust to ASR errors,
making it preferable for many applications [8, 9, 10].

SLU finds diverse applications in spoken dialog systems
(SDS) [11, 12], where a user and agent interact with or with-
out task objectives. In such a system, the integration of dialog
history in the model is crucial for downstream language under-
standing tasks [13, 14, 15, 16, 17] as it provides critical con-
textual information. It has been shown recently that E2E sys-
tems can integrate dialog history directly into the SLU model as
speech, thereby maintaining the model’s resilience to ASR er-
rors and leveraging context from dialog history efficiently [17].

In the literature, there are broadly two ways of integrat-
ing dialog history into a language understanding model, either
coarse or fine-grained level (see Figure 1).
Coarse-grained integration (CG): This follows a hierarchical
setup where each utterance in the dialog is encoded separately
into a representation and a sequence of such utterance repre-
sentations is encoded by a high level sequence encoder. Such a
setup was a popular choice to model conversations in text-based
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Figure 1: Left: Coarse-grained integration of dialog history.
Here, xj

i represents the ith token in the jth utterance in the dia-
log. Each utterance is encoded separately into a representation
uj and the sequence {uj}Lj=1 is passed to another sequence en-
coder to get the context representation c. Right: Fine-grained
integration of dialog history. The entire sequence of tokens in
the conversation {{xj

i}ki=1}Lj=1 is passed as a single contigu-
ous sequence to the conversation encoder.

dialog systems before the introduction of LLMs [13, 14]. Re-
cently, this approach was used in an E2E SDS to incorporate
dialog history in speech form directly [17].
Fine-grained integration (FG): This approach is used primar-
ily in text-based dialog systems using LLMs for language un-
derstanding [18, 19]. Here, an entire conversation is passed as
a single contiguous sequence into a LLM which acts as a con-
versation encoder. Since LLMs are pretrained on large amounts
of text data using long sequences as input to transformer-based
models, they are good at learning attention weights which span
over long sequences. This helps them capture long-range de-
pendencies in a dialog context which in turn is useful for down-
stream understanding tasks.

One of the advantages of the FG approach over CG is the
ability to capture long-range dependencies at the token level.
However, as mentioned above, this requires some form of pre-
training of transformers [18]. For speech based E2E models, it
is not clear how to pretrain these models in a similar fashion
using speech based tokens. Using pretrained transformer-based
speech encoders like wav2vec2.0 [1] or HuBERT [2] is imprac-
tical as speech sequences are much longer than their text coun-
terparts and concatenating speech based utterances as a single
sequence will make the sequence too long to process.

In this paper, we propose to use a FG approach to integrate
dialog history in E2E SDS and handle the long sequence prob-
lem by using a convolution sub-sampling approach. Instead of
mapping a sequence of speech frames in an utterance into a sin-
gle representation, as done in CG, we first map this sequence
into a shorter sequence of speech representations where each
representation spans a longer duration than individual frames.
These shorter sequences can now be concatenated across the
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conversation and fed to a conversation encoder.
This approach has the advantage that the output of the con-

versation encoder in the speech modality can be compared,
on a token by token basis, with the corresponding output of a
LLM based conversation encoder operating on text. We lever-
age this to our benefit by using a recently proposed tokenwise
contrastive pretraining criterion [4, 6] to perform a knowledge
transfer from a LLM to the speech-based conversation encoder.
This step also takes care of the necessary pretraining required
to capture long-range token-level dependencies by using the
knowledge present in LLMs gained through large-scale text-
only data.

We show that our proposed model when fine-tuned, outper-
forms previous state-of-the-art (SOTA) results for E2E dialog
act classification task on the Switchboard and HarperValley-
Bank datasets. Furthermore, our model performs consistently
better as the amount of context information is varied and is also
robust to ASR errors compared to the traditional cascaded setup.

2. Method
2.1. Speech-based conversation model

The proposed E2E conversation model consists of three parts.
Utterance encoder: Every utterance in a dialog is encoded
using a speech encoder. We used a medium-sized conformer-
based speech encoder [20], of a pretrained RNN-T based ASR
model. This encoder was trained using 80-dimensional, global
mean and variance normalized log-mel filterbank features, ex-
tracted every 10 ms using a 25 ms window. We concatenated
four consecutive frames such that each output frame from the
encoder represents 40 ms of speech.
Convolution subsampling: Simply concatenating all the out-
put sequences from the utterance encoder can lead to a sequence
which can be computationally expensive to encode using an
attention-based encoder. Thus, to make the dialog sequence
more tractable, we first pass the concatenated sequence through
256 convolution channels with a kernel size and stride of 3. This
effectively reduces the dialog sequence length by a factor of 3,
thus giving us output frames which are 120 ms in duration.
Conversation encoder: The output of the convolution layer is
now treated as a sequence of tokens that corresponds to the en-
tire dialog. An attention-based conversation encoder can now
be trained on this sequence such that long-term, token-level de-
pendencies are captured just like an LLM does on text-based
conversations. We use a 16-layered conformer to encode the
conversation. This conformer follows the same design as the
medium-sized conformer in Gulati et al. [20] and is trained us-
ing the knowledge transfer approach that we describe next.

2.2. Conversation-level Knowledge Transfer (ConvKT)

As mentioned previously, pretraining the conversation encoder
is crucial to capturing long-range dependencies. We use to-
kenwise contrastive learning to transfer BERT’s1 token-level
knowledge to the speech-based encoder. We extend this tech-
nique to transfer knowledge through the last 6 layers of the 16-
layer conformer instead of just the last layer. We describe the
process below, borrowing some notations from [4].

Here, we are looking to align the output of layer lc of the
conformer-based conversation encoder with the output of layer
lb of BERT. For this paper, we use all tuples (lc, lb) in the
set L = {(11, 2), (12, 4), (13, 6), (14, 8), (15, 10), (16, 12)},

1https://huggingface.co/bert-base-uncased
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Figure 2: Each utterance in a dialog is encoded using a speech
encoder. All sequences in the dialog are concatenated and
passed through a convolution layer which cuts down the se-
quence length by a third. This sequence is passed through a se-
ries of conformer layers. Knowledge transfer from BERT takes
place at the last six layers of the conformer model.

such that we use equally spaced layers from BERT following
Shleifer et al. [21]. Let the output of any layer lc of the con-
former2 be H ∈ RT×768 and the output of layer lb of BERT
be Btext ∈ Rn×768. H is converted to Bspeech ∈ Rn×768

through a cross-attention between non-contextual (NC) word
embeddings, E ∈ Rn×768 of the conversation text and H as
shown in Figure 2. Note that for each of the 6 layers where the
knowledge transfer happens, we have separate NC embeddings
and cross-attention weights. However, the NC embeddings are
all initialized with the WordPiece embedding layer of BERT.

The cross-attention follows a dot-product attention mecha-
nism with weights Wq , Wk and Wv ∈ R768×768. The query,
key and value iare now computed as,

Q = EWq

K = HWk

V = HWv

Now, the contextual embeddings, Bspeech are computed as,

Bspeech = softmax(QKT)V

Each row in Bspeech now has a one-to-one correspondence with
each row in Btext. Next, we concatenate the rows of Bspeech

and Btext obtained for all (lc, lb) ∈ L across the batch, thus
giving us Bspeech

full and Btext
full ∈ b× 768.

To align the speech and text tokens, a contrastive loss is
computed between Bspeech

full and Btext
full as,

LALIGN = − τ

2b

b∑

i=1

(log
exp(sii/τ)∑b

j=1 exp(sij/τ)
+ log

exp(sii/τ)∑b
j=1 exp(sji/τ)

)

2The number of hidden units in the conformer is 256 but we convert
it to 768 using a linear layer for knowledge transfer.
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Here, sij is the cosine similarity between the ith row of Btext
full

and the jth row of Bspeech
full and τ is the temperature set to 0.07

following previous work [4]. Minimizing this loss can align
speech embeddings with BERT embeddings at the token level.
It is important that the embeddings E are non-contextual, other-
wise the cross-attention does not use the speech embeddings H
in a meaningful way, ignoring the required context from speech.

3. Experiments
3.1. Training procedure

Pretraining: First, we pretrain a conformer-based ASR model
following Saon et al.’s [22] training configuration on 2000 hours
of the Fisher dataset. This does not include the Switchboard
data as we use it for evaluating the downstream task. The tran-
scription network from this model is used as the utterance en-
coder. Once trained, the utterance encoder is kept frozen and the
rest of the conversation model in Figure 2 is trained using the
ConvKT approach above. This is also done on the Fisher dataset
as its format is open-ended dyadic conversations. Each training
instance is a sequence of 8 utterances in the Fisher dataset. The
BERT model was kept frozen during this pretraining.

ConvKT was performed on 8 V100 GPUs for 50 epochs
using a batch size of 512. We used the AdamW optimizer and
a OneCycleLR policy with a peak learning rate of 5e-4.

Finetuning: After pretraining the conversation encoder, we
finetune it on the downstream classification task. We pool the
final layer output of the speech-based conversation encoder by
using the learnt NC [CLS] embedding to attend over the se-
quence using the learned cross-attention module. Thus, we get
a BERT-like [CLS] token embedding from speech-only data for
the entire conversation which is then passed to a classifier. We
do not adapt our model using in-domain transcripts of the clas-
sification data using ConvKT as we assume a realistic scenario
where no such transcriptions are available. We used a conversa-
tion length of 8 for finetuning where 7 utterances form the dia-
log context and the 8th utterance is to be labelled. For finetun-
ing, we adapt the model E2E including the utterance encoders.

3.2. Dialog act (DA) classification datasets

For downstream evaluation, we focus on the DA classification
task and use two conversation datasets.
Switchboard (SWB)[23]: We use the NXT format Switch-
board corpus which is a version of the Switchboard telephonic
speech corpus annotated with 42 dialog acts. This dataset con-
tains 193k utterances in the training set, 23k in the validation
set and 5k in the test set. We finetune our model on this dataset
using multiclass cross-entropy loss.
HarperValleyBank (HVB)[11]: The HVB dataset consists of
1446 simulated spoken conversations between bank employees
and customers. There are 16 dialog acts in total and the data
is annotated with multiple dialog acts per utterance. The data
contains 1174 conversations in the training set and 199 conver-
sations in the test set. For this data, we finetune our model using
multilabel binary cross-entropy loss.

4. Results
The results of our experiments are shown in Table 1. We in-
cluded the oracle performance of the BERT model when trained
using human annotated transcriptions of the two datasets.
BERT-utt refers to BERT finetuned with only the utterance text

Table 1: Results on DA classification on SWB and HVB. We use
accuracy for SWB and Macro-F1 score for HVB.

Model SWB HVB

Oracle

(1) BERT-utt 75.36 56.90
(2) BERT-conv 78.12 63.50

Baselines

(3) ASR → BERT-conv 56.29 51.81
(4) Wu et al. [11] - 45.50
(5) Thomas et al. [24] - 55.33
(6) Ortega et al. [25] 67.40 -
(7) ESPnet-SLU [26] 68.70 47.10
(8) HIER-S [17] 72.85 57.73

Our E2E models

(9) Conformer-utt 70.72 53.28
(10) ConvRAND 71.35 57.70
(11) ConvKT-SL 73.21 59.66
(12) ConvKT-ML 73.98 59.78

for the classification task, while in BERT-conv, the entire con-
versation up to 7 preceding utterances is also given as input.
Row (3) refers to the traditional cascaded baseline where we
use an off-the-shelf ASR model to decode the test set and run it
through the BERT-conv model. For a fair comparison with our
E2E model which does not assume access to in-domain tran-
scripts, we do not adapt the ASR model to the SWB or HVB
datasets. The ASR model we used is the RNN-T based model
that we pretrained and mentioned in section 3.1. As observed
in previous work [27, 17], an unadapted RNN-T gives errorful
transcriptions and in some cases just outputs a blank token due
to acoustic mismatch. This is catastrophic for the SLU model
as evidenced by its poor performance. Rows (4) and (5) show
results for other models from previous work on the HVB dataset
although these do not use dialog history.

Rows (6), (7) and (8) are models that use dialog history,
however, the HIER-S model is the only one that is E2E. This is
similar to the CG setup in the introduction. Finally, the last 4
rows show our implementation of various E2E models. Row (9)
is an E2E model that does not use dialog history but rather fine-
tunes just the conformer-based utterance encoder for the SLU
task. ConvRAND refers to our E2E conversation model in fig-
ure 2, however, it is not pretrained using the ConvKT crite-
ria. Thus, it underperforms compared to the CG based HIER-S
model possibly due to lack of pretraining which makes it unable
to capture long-range dependencies in the FG setup. ConvKT-
SL (single-layer) in row (11) refers to the E2E conversation
model pretrained with ConvKT but the knowledge transfer from
BERT only takes place at the last layer, i.e. L = {(16, 12)}.
Whereas, ConvKT-ML (multi-layer) in row (12) is our full
model where knowledge transfer happens in the last six layers.

Our full E2E model, ConvKT-ML outperforms the best
non-contextual models by 7.7% and 8.0% on SWB and HVB
respectively. The conversation model is able to utilize dialog
history effectively as shown by these gains. Furthermore, com-
pared to the previous best HIER-S model, both ConvKT-SL and
ConvKT-ML perform better. Also, note that utilizing multiple
layers for knowledge transfer (ConvKT-ML) is beneficial over a
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single-layer variant (ConvKT-SL). Next, we show that this ben-
efit is consistent even when we vary the context length.
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Figure 3: Performance variation of dialog history based E2E
models as the amount of context information is varied.

Effect of context length: We further evaluate how varying the
number of utterances in the dialog history affects the perfor-
mance of different models. For this, we use only dialog history
based E2E models from Table 1; the trend is shown in Figure 3.
The performance of all models improves as the context length
is increased. The only exception seems to be the ConvRAND
model on the SWB dataset, whose performance drops slightly
as the context length is increased from 2 to 4. This may be be-
cause this model is not pretrained, and hence faces difficulty in
capturing long-term dependencies effectively.

On the SWB dataset, we see that ConvKT-ML performs
better for all context lengths whereas on HVB, ConvKT-SL
and ConvKT-ML perform almost equally well for most context
lengths. Overall, our FG based ConvKT models outperform the
CG based HIER-S model even with different context lengths.

Cross-modal embedding alignment: One of the motivations
for using the ConvKT pretraining is to achieve an alignment
between WordPieces and the corresponding locations in the
speech. It has been shown previously that such an alignment
is indeed achieved at the utterance level [4]. Here, we wish
to see if this is consistent even at the conversation level where
it might be harder to learn this alignment on much longer se-
quences. For this, we plot the heatmap of the cross-attention at
the last layer of our model and show this in Figure 4.

The top and the bottom parts show this alignment in the
ConvKT-SL and ConvKT-ML models respectively. We note
that there is a monotonic alignment between the WordPiece to-
kens and the speech embeddings from our E2E conversation
model for both ConvKT-SL and ConvKT-ML. Previously, this
type of monotonic alignment has been seen in attention-based
ASR and knowledge transfer models [4, 6, 28] at the utterance
level. In this paper, we see for the first time that this alignment
can be achieved at the conversation level and can improve con-
text aware spoken language understanding.
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[SEP][SEP]
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[SEP][SEP]
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Figure 4: Attention heatmap of the cross-attention layer which
shows how the speech embeddings align with the WordPiece
BERT embeddings in a 45 seconds long conversation from the
Fisher data. [SEP] on the y-axis represent points where the
speaker changes. Each pixel denotes 120 ms of audio.

Note that in the ConvKT-SL alignment, there are a few in-
termediate regions in the speech that have high weights which
means that these regions are always part of the contextual rep-
resentation of any other speech token. These might be regions
where the models embeds useful contextual information. How-
ever, with the ConvKT-ML model, we do not see such regions
prominently scattered around. Rather, the only region where we
see consistently high attention weights are the first few tokens.
This shows that context information is more localized in the
ConvKT-ML model than in the ConvKT-SL model. We hypoth-
esize that as the knowledge transfer to ConvKT-ML is deeper,
the model relies confidently on a localized region in the speech
to embed context rather than scattering it across the signal. Fu-
ture work can investigate this phenomenon in more depth.

5. Conclusion
In this paper, we show how an E2E SLU model can integrate
dialog history in speech form in a token level manner for im-
proved performance. This is analogous to how LLMs encode
the entire text conversation for dialog tasks. Thus, knowledge
transfer from LLMs to our E2E conversation model can be done
in a fine-grained manner at the token level. To do this, we pro-
pose the ConvKT mechanism which is a tokenwise contrastive
learning based knowledge transfer technique. Extensive exper-
iments on two datasets show that our proposed model can im-
prove downstream E2E SLU and consistently improves perfor-
mance even with varied context lengths. Future work should
look at how an E2E conversation model can be built in a self-
supervised way without needing parallel transcripts.
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