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Abstract
The production and annotation of music datasets requires

very specialized background knowledge, which is difficult for
most people to complete. Therefore, the number of annotated
music samples is at a premium for Music Information Retrieval
(MIR) tasks. Recently, segment-based methods for emotion-
related tasks have been proposed, which train backbone net-
works on shorter segments instead of entire audio clips, thereby
naturally augmenting training samples without requiring addi-
tional resources. However, when training at the segment level,
segment labels are the major problem. The most commonly
used method is that segment inherits the label of the clip con-
taining it, but as we all know, music emotion is not constant
during the whole clip. Doing so will introduce label noise and
make the training overfit easily. To handle the noisy label issue,
we propose a semi-supervised self-learning method and achieve
better results than previous methods.
Index Terms: music emotion recognition, semi-supervised
learning, segment-based, learning with noisy label

1. Introduction
Music emotion recognition (MER) task aims to automatically
recognize the emotion expressed in a given music clip. MER
can be widely used in many human-computer interaction fields,
such as dynamically generating music to adapt to the emotion
of scenes in movies or games [1], music-assisted psychologi-
cal or physical therapy, personalized recommendation in stream
media, human-machine interaction, music retrieval, and so on,
which has broad application prospects. In recent years, As the
amount of data grows, data-driven deep learning methods have
become the mainstream method in the Music Information Re-
trieval (MIR) field [2, 3].

At present, the duration of audio clips in public music emo-
tion datasets is 30 ∼ 45 seconds. Although the longer the dura-
tion is, the more helpful it is to distinguish emotions, according
to the study of music psychology, it is found that a duration of
approximately one second of music carries a substantial amount
of information that elicits emotional responses [4]. To ad-
dress the issue of limited availability of annotated data in emo-
tion recognition tasks, some segment-based methods [5–8] have
been proposed recently, which naturally increase the amount of
training data and can make full use of every audio sample in the
dataset.

After the audio clip is divided into segments, Sarkar et
al. [7] make every segment inherit the label of the correspond-
ing clip containing it, which is also the simplest method, then
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majority vote and maximum run length are used to obtain clip-
level results. However, the emotion of the music is not con-
stant. Therefore, each segment may actually carry different
emotions, which also introduces the problem called noisy la-
bel. He et al. [8] used an unsupervised method, i.e. using Au-
toEncoder to reconstruct the masked Mel-spectrogram of the
segment to obtain audio segment embedding. The music con-
text emotion information is then learned in a supervised manner
using BiLSTM. However, it is unknown how many emotion-
related features are included in the embedding. In the field of
speech emotion, Mao et al. [9] proposed a self-learning frame-
work to update model parameters and segment labels iteratively
in the training process and used soft labels instead of hard la-
bels, which to some extent solved the problem of noisy labels.
However, only using the output of the model as the soft label of
the next epoch will excessively rely on the prediction ability of
the model. Once the model makes a prediction error, this error
will deepen with the training, which is called confirmation bias.

Inspired by [10], when the mixture of correct and incor-
rect labels are fed to the deep neural networks, networks tend to
fit the former before the latter. Therefore, we propose a Semi-
supervised Self-learning Framework (SSSL), to model the loss
value of each training sample, and to distinguish the samples
most likely to be clean from those most likely to be noisy. Then
we use the mixup [11] data augmentation algorithm and con-
sistency regularization to prevent the confirmation bias of the
model’s prediction.

Our main contributions are: 1) Instead of inheriting clip-
level labels for each segment or using unsupervised methods,
we employ semi-supervised learning to handle noisy labels. 2)
Combining noisy label processing with semi-supervised learn-
ing, to avoid confirmation bias of self-training where the model
would accumulate its errors. 3) Compared with baseline mod-
els, the effect is improved.

2. Method
Our approach consists of two main steps. The first step is
to train a seg classifier robust to label noise on the expanded
segment-level dataset. Then the second step uses the original
song-level dataset. Predict each segment in each song, get the
statistical value of the probability distribution of each segment,
and then use a machine learning method to complete the emo-
tional prediction of the song. The overall framework is shown
in Figure 1.

2.1. Semi-supervised self-learning framework

We propose a semi-supervised self-learning framework on the
extended segment dataset, aiming to obtain a label-noise robust
segment-level classifier. At the start of each epoch, the training
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Figure 1: Flow chart for our proposed method. The blue line in the figure is a Gaussian distribution with a smaller mean value, which
is regarded as the clean set, while the red line is regarded as the noisy set. In the following semi-supervised learning, the clean set is
regarded as the labeled set and the noisy set is regarded as the unlabeled set.

dataset is partitioned into a clean set and a label noisy set us-
ing a two-component Gaussian mixture model (GMM) by the
cross entropy loss value for each training sample. We utilize
the Expectation-Maximization (EM) algorithm to iteratively es-
timate the parameters of the GMM. Then, the semi-supervised
learning method is used to treat the clean set X as the labeled
set while the noisy set U as the unlabeled set. We erase the label
of the U set, use the predicted value of the model as the pseudo
soft label.

2.1.1. Task formulation

In a k-class classification problem, the training data with n
training samples X = [x1, . . . , xn], and corresponding ground-
truth labels Y = [y1, . . . , yn], where yi is a k-dimensional one-
hot vector. Classification problems on clean label datasets are
often defined as:

min
θ

L(θ|X,Y ), (1)

where θ represents the model parameters, and L represents a
loss function. The most commonly used cross entropy loss
function in classification tasks is as follows:

L = − 1

n

n∑

i=1

k∑

j=1

yij logfj(θ, xi), (2)

where f represents the output probability distribution of the final
softmax layer. But when we use the above formulas (1) and (2)
to train on the noisy label dataset, severe overfitting will occur.

2.1.2. Training samples partition

Deep neural networks have a tendency to prioritize the learn-
ing of simple and coherent samples, resulting in a reduction
in their loss. That is, noisy samples typically exhibit higher
losses during the early stages of training [12]. Previous experi-
ments [13, 14] indicate that the loss distributions of clean sam-

ples and noisy samples during training often exhibit a character-
istic pattern resembling a two-component Gaussian distribution.
Specifically, the loss distribution of clean samples tends to have
a smaller mean value compared to that of noisy samples. Lever-
aging this training phenomenon, we apply the GMM to distin-
guish noisy samples by feeding individual per-sample losses as
inputs. The probability density function of the G-component
mixture model is defined as:

p(l) =
G∑

g=1

λgp(l|g), (3)

where λg represents the mixing coefficients for the convex com-
bination of each individual probability density function p(l|g).
Regarding our situation, we can fit a 2-component GMM to
model the distribution of clean and noisy samples. We input the
loss L from equation (2) into a two-component GMM and em-
ploy EM algorithms to estimate GMM’s parameters iteratively.
We define the posterior probability ωi as the probability that the
ith sample belongs to the Gaussian component with a smaller
mean, given its loss li. It can be interpreted as the confidence
level that the sample’s label is clean. By setting a global thresh-
old τ for the probability ω of all training samples’ label to be
clean, we can split the expanded segment-level dataset D into
two parts: set X consisting of samples with a high probability
of having correct labels, and set U is exactly the opposite. In
the subsequent procedure, the labels of samples in set U will be
discarded.

2.1.3. Semi-supervised learning

For the unlabeled set U , the initial labels are likely to be incor-
rect and have been erased. As a result, we generate pseudo soft
labels ŷ by applying sharpening to the predicted distribution of
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the model.

ŷ = Sharpening(fj(θ, xi))

= fj(θ, xi)
−k 1

T /
K∑

k=1

fj(θ, xi)
−k 1

T
(4)

where Sharpening(·) denotes the sharpening function often
employed in pseudo labeling, and T represents temperature co-
efficient. And the Û will be generated then.

Û = {(xi, ŷi)|xi ∈ U} (5)

As [13] has shown that mixup technology can eliminate confir-
mation bias to a certain extent. This approach involves training
on convex combinations of sample pairs xi and xj , along with
their respective labels yi and yj :

x = δxi + (1− δ)xj , (6)

y = δyi + (1− δ)yj , (7)

where δ is drawn from a beta distribution randomly. This in-
tegration introduces regularization to encourage the network to
exhibit linear behavior between samples, thereby reducing fluc-
tuations in distant regions. In terms of label noise, mixup offers
a strategy to merge clean and noisy samples, resulting in a more
representative loss that guides the training procedure.

2.1.4. Loss function

We use the standard cross-entropy loss for the data augmented
with mixup:

LMIX = − 1

|D̃|
∑

(x,y)∈D̃s

yT logf(θ, x) (8)

Confirmation bias resulting from the accumulation of errors is
a common occurrence in self-training methods [15]. Model en-
sembling is a commonly employed approach to address this is-
sue. Dropout can be regarded as an implicit form of model en-
sembling. To mitigate the confirmation bias issue, we introduce
the R-Drop loss [16], a straightforward regularization strategy,
to enforce consistency among these implicit sub-models.

LKL =
∑

x∈U

1

2
(DKL(P (θ, x)||Q(θ, x))

+DKL(Q(θ, x)||P (θ, x))),

(9)

where DKL is Kullback-Leibler (KL) divergence, P and Q rep-
resent the probability distributions obtained from two forward
processes, respectively. Therefore, the total loss is:

L = LMIX + λLKL, (10)

where λ is a hyper-parameter that controls the trade-off between
the two losses.

2.2. Song-level decisions

Given a sequence of probability distributions of emotional states
generated by a segment-level classifier, we can make decisions
based on the information. A reliable segment-level classifier
serves as a prerequisite for clip-level classification. This al-
lows us to utilize machine learning algorithms to handle struc-
tured features obtained from statistical properties of the segment

probability distributions. The probability of the kth emotion for
segment s is defined as Ps(Ek).

fk
1 = max

s∈C
Ps(Ek), (11)

fk
2 = min

s∈C
Ps(Ek), (12)

fk
3−5 = Quartiles 1− 3{Ps(Ek)}, (13)

fk
6 =

1

|C|
∑

s∈C

Ps(Ek), (14)

fk
7 =

|Ps(Ek > γ)|
|C| , (15)

where C represents the set of all segments in a single song.
The features fk

1 , fk
2 , and fk

3 denote the maximum, minimum,
and average probabilities, respectively, of the kth emotion at the
segment level within a song. The features fk

3 -fk
5 correspond to

the kth emotion’s 3 quartiles in the song. The feature fk
7 repre-

sents the percentage of segments that exhibit a strong likelihood
of sentiment k. In our experiments, we set γ to 0.2. This ag-
gregation step produces a feature representation of dimension
K × 7 for every song. Utilizing this song-level feature repre-
sentations, we can utilize a Machine Learning classifier to make
song-level decisions.

3. Experiments
We evaluated the proposed method on three publicly available
datasets: PMEmo dataset [17], Emotion in Music dataset [18]
and 4Q dataset [19]. Deep learning is data hungry, these data
volumes are difficult to support models with strong training gen-
eralization ability, and are easy to overfit.

3.1. Setup

We convert each segment unit into Mel-spectrogram, with the
Hanning window length of 1024 and window hop size of 512
using the Librosa [20]. We utilize 128 mel bins. Our segment
classifier uses DenseNet [21], we only modify the input channel
and output number of classification. SVM is used for song-level
decision.

3.2. Datasets

PMEmo: This dataset contains 794 pieces of music, all of
which are pop music. We utilize 767 of these clips with static
V/A annotations in our work.
4Q: There are 900 music clips in this dataset. All music clips
are divided into four parts according to Russell’s V/A quadrant,
with 225 clips in each part. Most audio clips are approximate
30 seconds.
Emotion in Music: The dataset consists of 1000 music sam-
ples, each 45 seconds long, obtained from sources like Ja-
mendo, with copyrighted music. The labels for this dataset were
obtained through crowdsourcing platforms. Just like in previous
works, we utilized a set of 744 audio samples after removing
duplicates.

3.3. Audio Pre-process

In the previous works, in the methods of taking the entire clip
as input [22, 23], 30 seconds of audio are generally reserved,
and the part less than 30 seconds is padded with zeros. In [8],
for audio clips that are shorter than 30 seconds, they are padded
by repeating the audio content. Since the variance of sample
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duration in datasets is large, when the method of filling zeros
is used, many blank segments will be generated. Using the cir-
cular padding method will generate too many repeated training
samples. Therefore, apart from segmenting the audio into fixed-
length segments, no cropping or padding is performed.

4. Results
In this section, we present the performance results for different
segment durations and compare them with the results obtained
from other MER methods.

4.1. Performance at various segment durations

According to the previous music psychology research [4, 24],
people can react to and make judgments about the emotions in
music within one second. The longer the segment, the more
helpful it is for emotion recognition, but too long segments will
reduce the data volume of the segment dataset, so a compro-
mise is required. Thus, we experimented with integer segment
duration from 1 second to 5 seconds, the overlap of adjacent
segments is 1 second less than the segment duration. The ex-
perimental results are presented in the table 1.

Table 1: Experimental results with different segment duration

Datasets Seg Dur. Valence Arousal
Acc. F1 Acc. F1

PMEmo

1 77.43 81.32 85.42 86.61
2 78.71 82.20 84.20 85.26
3 83.19 82.31 84.49 86.01
4 82.11 81.71 81.20 82.20
5 82.69 81.32 84.42 82.61

4Q

1 69.11 67.32 87.20 86.67
2 71.32 72.45 86.60 86.70
3 75.20 77.37 86.56 86.14
4 74.32 76.55 85.30 86.65
5 74.59 77.05 85.67 86.51

The results indicate that shorter segment durations yield su-
perior performance in the Arousal dimension, while longer seg-
ment durations are advantageous for Valence recognition. For
example, in the PMEmo dataset, the 1s segment showed the best
Arousal result with an accuracy of 85.42% as well as a F1-score
of 86.61%, while the 3s segment showed a better Valence accu-
racy and F1-score. The results on 4Q dataset show a similar
trend.

For such results, our analysis may be that Arousal and in-
tensity are more correlated, and intensity is relatively easier to
be preferentially recognized by the auditory system. The iden-
tification of Valence involves more psychological knowledge,
and the perception process of psychology is much more compli-
cated, so it needs a longer time period [4]. Moreover, we found
it is not that the longer the segment duration, the better the ex-
perimental results. It may be related to the overlap value used
by different segment durations. To ensure an adequate amount
of data, we use a larger overlap value in long segments, which
will lead to data redundancy and make the model overfit the
data.

4.2. Experimental results compare with other models

For a fair comparison, our experimental results are all the av-
erage values obtained under the cross-validation of ten fold.

Among them, the proposed* is the ablation experiment, which
does not contain LKL. Bold numbers indicate the best result.

As shown in Tables 2 and 3, our method achieves compa-
rable performance compared to other segment-based and clip-
based models. Emotional states in long music pieces may have
changed or be in transition between different emotional states
[24], which may confuse the learning model and make it dif-
ficult to extract unified musical features specific to one emo-
tion. In addition, the emotional value of music may be influ-
enced by the harmony, particularly in minor keys, which often
requires more time for cognitive processing. On the other hand,
arousal, which is related to the dynamic aspects of music stimu-
lation, may have a more immediate impact [4]. Segment-based
method alleviates this problem, as emotions tend to be more
constant over shorter segment durations, which facilitates emo-
tion recognition and improves learning efficiency.

Table 2: Comparison on binary classification task

Datasets Method V-acc V-f1 A-acc A-f1

PMEmo

Yin’s [25] 70.43 75.32 71.49 76.36
He’s [8] 79.01 83.20 83.20 83.20

Proposed* 79.01 82.01 81.20 82.20
Proposed 83.19 82.31 85.42 86.61

4Q
He’s [8] 67.11 67.11 86.56 86.56

Proposed* 76.32 76.45 86.70 86.50
Proposed 75.20 77.37 87.20 86.67

Table 3: Comparison on four classification task

Datasets Method acc f1 score

4Q

Panda’s [19] – 76.41
Koh’s [26] 72.00 –
Proposed* 74.39 75.30
Proposed 76.49 78.60

EiM
Koh’s [26] 72.00 –
Proposed* 72.90 73.32
Proposed 75.81 75.34

5. Conclusion
We present a semi-supervised self-learning framework to deal
with the label noise problem. The framework can use unla-
beled data through self-learning, and use labeled data to guide
the model to learn the correct feature representation, so as to
effectively deal with the problem of label noise. The problem
of confidence bias in self-learning method is solved. In the self-
learning process, the model may be too confident in its own
prediction results, resulting in high confidence in the prediction
results, which will accumulate errors. This method addresses
this issue by introducing an additional consistency regulariza-
tion, which improves the generalization and robustness of the
model. Further research on song-level decision-making will be
conducted in the future.
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