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Abstract
It has already been observed that audio-visual embedding is
more robust than uni-modality embedding for person verifi-
cation. But the relationship of keyframes in time series be-
tween modalities seems to be unexplored. Hence, we pro-
posed a novel audio-visual strategy that considers connections
between time series from a generative perspective. First, we
introduced weight-enhanced attentive statistics pooling to ex-
tend the salience of the keyframe weights. Then, joint attentive
pooling incorporating 3 popular generative supervision models
is proposed. Finally, each modality is fused with a gated at-
tention mechanism to gain robust embedding. All the proposed
models are trained on the VoxCeleb2 dev dataset and the best
system obtains 0.14%, 0.21%, and 0.37% EER on three official
trial lists of VoxCeleb1 respectively, which is to our knowledge
the best-published results for person verification.
Index Terms: person verification, audio-visual, generative
model

1. Introduction
Biometrics-based person verification technologies are widely
used in access control. In the wild, the speech segments are
corrupted with real-world noise including laughter, music, and
other sounds. Similarly, face images have variations in pose,
image quality, and motion blur. It creates additional challenges
for the verification system.

The development of verification in Voxceleb [1, 2] first ap-
peared in speaker verification. The research [3] proposed atten-
tive statistics pooling to focus on important frames of speaker
verification and get higher discriminative ability than the tra-
ditional averaging method. In further research, ECAPA-TDNN
[4] was based on blocks of TDNNs and Squeeze-Excitation(SE)
[5] to reconstruct frame-level features. Meanwhile, The margin-
based softmax loss originating from face recognition is widely
used for training models [6, 7, 8, 9]. These losses were also
customized to adapt to the speaker verification task [10, 11] and
achieved SOTA at that time. Recent advances driven by large-
scale pre-trained models have taken the task of speaker recogni-
tion to a new level. With pre-training, Superb [12], Unispeech
[13], Wavlm [14], HuBERT [15] have achieved excellent per-
formances on multiple sets.

The performance of speaker systems would degrade dra-
matically under wild circumstances [16]. To solve the prob-
lem, researchers have found that simply fusing the scores from
speaker embeddings and facial embeddings can yield good re-
sults [17, 18]. For the first time, S. Shon [16] attempted to fuse
audio-visual information with deep learning-based models to
achieve better results. As the transformer has been proposed, it
seemed more efficient [19] to fuse different modalities in large

datasets. Previous studies have sought implicit feature expres-
sion and supervision patterns from the perspective of network
structure. To further explore the explicit correlations, Y. Liang
[20] gave person verification a point of view of the HGR max-
imal correlation. Most of the research on audio-visual works
[21, 19] still focused on extracting frame-level embeddings and
then simply averaging them as an aggregator to get segment-
level embeddings.

Our network is reconsidered from the perspective that the
weight of each frame in time series of the different modalities
are different expression styles of the same facial action. As
a prerequisite, we enhance the frame weight of the attention
statistics pooling [3] to adjust the situation of the audio-visual
training process. Then, 3 popular generative models inspired
by Cycle Consistency [22], Patch NCE [23], Dual Diffusion
Implicit Bridges(DDIB) [24] is introduced into the aggregator
for transferring styles and monitoring inference. The method
that combines weight-enhanced attentive statistics pooling and
generative supervision is called joint attentive pooling. Each
frame contributes according to its relevance to the final repre-
sentation avoiding equal contributions and preventing accumu-
lated errors. Finally, All three generative supervised methods
demonstrate unique robustness in performance, which can be
corroborated by mining correlations on different modal time se-
ries.

2. Method
The overall network (Fig.1) consists of the backbone of each
modality (Sec.3), joint attentive pooling module, and fusion
module (Sec.2.3). The joint attentive pooling module is the
combination of weight-enhanced attentive statistical pooling in
Sec.2.1 and generative supervision Sec.2.2

2.1. Weight-enhanced attentive statistical pooling

The data of each modality are pre-processed as stated in Sec.3
and sent to the respective encoders. But when visual informa-
tion is added for joint training, there is a serious drop. To solve
the problem, we introduce weight enhanced method of attentive
statistical pooling. The detailed calculation process of weight
enhanced method is as follows.

Through the original attentive statistical pooling mecha-
nism [4], each frame will be given different weights.

et,c = (vc)T tanh
(
Wht + b

)
+ kc, (1)

where ht denotes the weight of the last frame layer at time step
t. The parameters W ∈ RR×C and b ∈ R ˇR×1 project the
information for self-attention into a smaller R-dimensional rep-
resentation that is shared across all C channels to reduce the
parameter count and risk of overfitting.
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Figure 1: Overall Network
This information is transformed to a channel-dependent

self-attention score through a linear layer with weights vc ∈
RR×1 and bias kc.

However, here comes a problem. It is found that the value
of temporal attention λt has a comparatively small standard de-
viation. That is to say, the keyframes in the time domain are
not obvious. To make the attention more bifurcated and to help
the learning of the subsequent layers, we enhance the weight of
each frame by the following equation.

et,ctanh =
λt
tanhe

t,c

λt
, (2)

while the attention map et,c ∈ RT×A and the projected atten-
tion map et,ctanh ∈ RT×A is given by

λt = sumtemporal(e
t,c), (3)

λt
tanh = mu(λt)tanh(

λt −mu(λt)

std(λt)
) +mu(λt). (4)

mu(·), std(·) is mean and standard deviation of the matrix,
λt ∈ RT×1 denotes the temporal attention; The enhanced
weights are projected into a more dispersed and polarized space
RT×1 and preserve the mean. If not, fine-grained granularity
brings the difficulties of convergence for further experiments.
The enhanced method can avoid non-convergence, alleviate
overfitting and be beneficial to the later learning of audio-visual
weight interactions.

So compared to the original attention map, it is using the
new map et,ctanh instead of the original map et,c. This scalar
score et,ctanh then normalized over all frames by applying the
softmax function channel-wise across time:

αt,c =
exp

(
et,ctanh

)
∑T

τ exp
(
et,ctanh

) . (5)

The self-attention score αt,c represents the importance of
each frame given the channel and is used to calculate the
weighted statistics of channel c. Then the weighted mean vector
and weighted standard deviation vector can be calculated as

µ̃c =
T∑

t

αt,cht,c, (6)

σ̃c =

√√√√
T∑

t

αt,c(ht,c)2 − (µ̃c)2. (7)

The remainder of the calculations is identical to [4]. The
weight-enhanced attentive statistical pooling is proved to play a
positive role in many aspects in the later comparison experiment
of the whole network.

2.2. Generative supervision

From the perspective of face verification, researchers such as
[25] hope to eliminate the impact of facial expressions on face
verification. Meanwhile, from the perspective of speaker veri-
fication, some speech information of audio interval is not help-
ful for speaker verification. Then naturally, if the weights of
keyframes of two modalities are different styles of expression of
the same facial action, generative models can be used to achieve
this style transition.

Essentially, we want to build a block where keyframes
(weight of time series denoted as X = {A,V}, where λt,a

tanh ∈
A and λt,v

tanh ∈ V) between different modalities can be derived
from each other. So obviously, there is a style transition be-
tween the visual domain as V and the audio domain as A. Here
we define the corresponding modality domain that belongs to
the same utterance as X as X̄ = {V,A}). The individual gen-
erators with different modalities of X as input are denoted as
GX(·). Three different generative supervision methods are ap-
plied here.
• Cycle consistency: The cycle loss follows the previous paper

[22] to serve a similar purpose. It ensures each encoder can
evolve smoothly, which means the encoder can produce more
realistic temporal weights. The cycle loss ensures the con-
sistency of the distribution of keyframes from different do-
mains. Mapping loss and cycle consistency loss only involve
the mapping of temporal attention λt

tanh, and we express the
objective as:

Lmapping(GX , X) = Ex∼X{2−
A,V∑

X

< x̄,GX(x) >}, (8)

Lcycle(GX , X) = Ex∼X{2−
A,V∑

X

< x,GX(GX̄(x)) >},

(9)
L1 = Lmapping(GX , X) + Lcycle(GX , X). (10)

while Ladv and Lcycle denote mapping loss and cycle consis-
tency loss, < · , · > is the cosine similarity operator. From
the perspective of space, mapping loss is essentially a mu-
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tual mapping of weights between two modalities. Cycle-
consistency loss is actually a cyclic mapping of a single
modality through an intermediary space. Only through map-
ping loss can the intermediary space be given actual meaning.

• Patch NCE loss: A similar operation is applied as CUT
[23].The goal of the model is to match the short time series
of the corresponding position of the input and output, and
other short time series blocks of the same modality are used
as negative samples. Similar to the CUT model, but using
GX() instead of the StyleGAN2-based generator and 1 layer
of MLP (GX ) instead of 2 layers to fit simple data in one
dimension. The temporal weights are passed through the en-
coder to obtain a series of features {zl}L={HX(Gl

X(x))}L
and {z̄l}L={HX̄(Gl

X̄(x̄))}L, where Gl
X(x) denotes the l-th

layer of the feature. We index into layers l ∈ {1, 2, 3, . . . , L}
and denote s ∈ {1, 2, . . . , Sl}, where Sl is the number of
spatial locations in each layer. We refer to the corresponding
feature as zs

l and the other features as z
S\s
l . Overall Patch

NCE loss is calculated as

LPatchNCE(GX , HX , X) = Ex∼X

L∑

l=1

Sl∑

s=1

ℓ
(
z̄s
l ,z

s
l ,z

S\s
l

)
,

(11)
L2 = LPatchNCE(GX , HX , X) + LGAN(GX , X). (12)

while ℓ
(
v,v+,v−) and LGAN()has the same definition of

CUT [23]. Compared to the cycle consistency approach, this
method introduces the concept of contrastive learning and re-
laxes the assumption that a bijection relationship is required
for different modal domains. Also based on maximizing mu-
tual information, the multi-layer encoder is used to obtain
features at different layers and use these features themselves
for comparative learning.

• Diffusion loss: Inspired by [24], DDIM [26] models are
trained independently on each domain (A,V). A 1-D dif-
fusion model is implemented to adapt to this task. As in [24],
we use the forward ODE of the DDIM of the source domain
to transform the feature of the source domain X to its repre-
sentation in the latent space xmedium, and then directly use
this as the input of the reverse ODE of the DDIM of the tar-
get domainX̄ to obtain the output of the corresponding target
domain.

xmedium = ODESolve (x;GX , 0, T ) (13)

xtarget = ODESolve (xmedium;GX̄ , T, 0) . (14)

As with DDIB, exact cycle consistency is enforced when
training diffusion, eliminating the need to introduce addi-
tional cycle loss as in CycleGAN [22]. However, since su-
pervision through the generative block is required, the main
network needs to be updated using cycle consistency. Overall
Diffusion loss is calculated as

L3 = Ldiffusion = Ex∼X{2−
A,V∑

X

< x̄, xtarget >}, (15)

This approach nicely bypasses the pairs of positive and neg-
ative samples inside contrast learning and optimizes the abil-
ity to obtain potential encodings within a single domain. In
addition, we have tried to modify the conditional diffusion
[27, 28], but the result was not that good.

In summary, all three models have similar objectives that all
models use generative models to achieve this style transition. If
each model will obtain better robustness than the baseline, this
gives supporting evidence for the presence of the assumption of
style transitions between weights of time series.

2.3. Fusion strategy

Simple Soft Attention Fusion [29] is implemented. But we use
the fully connected layer instead of the transformer layer in the
original model to achieve the best fusion effect of the model.

For the joint embedding generated by the network, the con-
vergence can be accelerated by some tricks during the training
process. We follow [30] to impose an orthogonality constraint
on the fused embeddings. We hold the point of view that it is
mainly used to accelerate convergence.

3. Experiment Setup
VoxCeleb1&2 [1, 2] are used in our experiment. VoxCeleb is
an audio-visual dataset consisting of 2,000+ hours of short hu-
man speech clips extracted from interview videos on YouTube.
For model training, we use the development set of VoxCeleb2,
which contains 5,994 speakers. To better evaluate the perfor-
mance of our network, we adopt 3 trials in VoxCeleb1. For
audio data, 80-dimensional Fbank features are extracted with a
25 ms window and 10 ms frameshift, and augmentation with
the random mask is added along both the time and frequency
domain. Then we do the cepstral mean on the Fbank features.
The MUSAN [31] and RIR Noise datasets [32] are used as noise
sources and room impulse response functions, respectively. For
each video segment, we extracted 25 fps in VoxCeleb [1, 2]
datasets. Then use the similarity transformation to map the face
region to the same shape (1 × 128 × 128), which means that
we use grey images instead of RGB. Finally, we normalize each
image’s pixel value to reside in the range of [-0.5, 0.5]. The
advanced face detection methods [33, 34] and datasets [35, 36]
are wilder and more fine-grained. So face detection and face
alignment are not employed during pre-processing since rough
face detection has been performed in VoxCeleb datasets [1, 2].

For the audio encoder, we use ECAPA-TDNN [4] into
which Fbank feature is fed to extract speaker embedding. We
made only a few changes to ECAPA-TDNN, which adds addi-
tional scale information to the second layer. For the visual en-
coder, the face feature is extracted by the IResNet18 backbone
same as [6].

The training process is divided into two stages. Two differ-
ent modalities are trained separately first and then finetune in
the overall network. The main network is trained using AAM
softmax loss with a margin of 0.5 and a scaling factor of 30 with
32 NVIDIA Tesla P40s. We use the SGD optimizer with an ini-
tial learning rate of 0.01 and decrease the learning rate by 50%
every 5 epochs. Weight decay is set to 5e-4 to avoid overfitting
and the global batch size is 320.

Figure 2: Sample visualization of outliers
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Table 1: Performance of proposed network

Type Architecture #Modality VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H

EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF

Unimodal
ECAPA-TDNN[4] A 0.87 0.107 1.12 0.132 2.12 0.210
SimAM-Resnet[37] A 0.64 0.067 0.84 0.089 1.49 0.146

Unimodel Pretrain
(only finetune classifier)

Hubert Base[14, 15] A 0.99 - 1.07 - 2.22 -
Hubert Large[14, 15] A 0.81 - 0.82 - 1.68 -
WavLM Base+[14] A 0.84 - 0.93 - 1.76 -
WavLM large[14] A 0.62 - 0.67 - 1.32 -

Unimodel Pretrain
(finetune pretrain modal

and classifier)

Hubert Large[14, 15] A 0.59 - 0.65 - 1.34 -

WavLM large[14] A 0.38 - 0.48 - 0.99 -

Audio-visual

Z. Chen[21]

①A 2.31 - 2.23 - 3.78 -
②V 2.26 - 1.54 - 2.37 -

③fusion 0.59 - 0.43 - 0.74 -
ensemble(①,②) 0.51 - 0.43 - 0.78 -

ensemble(①,②,③) 0.50 - 0.38 - 0.68 -

Y. Qian[19]
A 1.62 - 1.75 - 3.16 -
V 3.04 - 2.18 - 4.23 -

fusion 0.71 - 0.48 - 0.85 -

Ours

A w/o enhanced† 0.98 0.140 1.24 0.163 2.30 0.264
④A 0.99 0.140 1.24 0.163 2.27 0.264

V w/o enhanced† 2.59 0.214 1.88 0.198 3.39 0.297
⑤V 1.44 0.147 1.28 0.157 2.14 0.230

fusion 0.22 0.022 0.27 0.035 0.52 0.058
fusion(cycle) 0.18 0.017 0.26 0.035 0.49 0.058

fusion(diffusion) 0.16 0.014 0.24 0.033 0.45 0.053
⑥fusion(NCE) 0.16 0.014 0.23 0.031 0.42 0.050

Audio-visual Ours ensemble(④,⑤,⑥) 0.14 0.012 0.21 0.028 0.37 0.046
† “w/o” means “without”

The weights of the 3 losses of generative supervision are set
to 0.5, 1, and 0.5. The generator GX (including GX̄ ) mentioned
in all three generation methods has 3 or 4 layers of MLP compo-
sition, which is determined by the dimensionality and complex-
ity of the time series weights. And the generators of different
modalities of different methods are independent of each other
without sharing weights.

We use cosine distance with adaptive s-norm [38] for scor-
ing. Then we report the Equal Error Rate (EER) and minimum
Detection Cost Function (minDCF) with Ptarget = 0.01 and
CFA = CMiss = 1 for performance evaluation.

4. Result Analysis
Weight-enhanced attentive statistical pooling is effective
from multiple angles. From table 1, we observe that the
weight-enhanced method for unimodality will not bring obvious
changes to speech while using the weight-enhanced in the face
alone can be a relief for the generalization pressure of attentive
statistic pooling. And the later ablation experiments show that
the weight-enhanced operation on a single modality brings bet-
ter performance on the joint audio-visual model. In terms of
vision alone, compared with the results of works [19, 21], our
proposed method uses less image information (grey image in-
stead of RGB), fewer data preparation (without face detection
and face alignment), a shallower extractor (IResNet18 instead
of ResNet34 [19] or SE-ResNet50 [21]). This method enables
us to gain a competitive reduction of EER to 63.1% of the pre-
vious baseline of vision by adopting a higher sampling rate.

Fusion with generative supervision reaches the SOTA of
the dataset. The application of cycle consistency is a basic ap-
plication of generative models for supervision and has limited
performance improvement. NCE loss as a strong substitute [39]
for cycle-consistency loss does have better training supervision.
However, it seems that the generative power of diffusion can
only be demonstrated in scenarios with much larger amounts
of data. From the training perspective, the generative supervi-
sion losses will finally converge to the level of 1e-3. As the

losses converge and each encoder is analyzed separately, the
transformation from vision to audio is easier to converge than
the transformation from audio to visual. This shows that the
supervision by transitions of style is mainly reflected in “vision
supervises audio”. From the results in Table 1, the use of each
type of generative supervision loss indeed enhances the weight
of important time frames. Compared to other networks in audio-
visual person verification, the fusion network alone can greatly
reduce the EER down 35.7% of the previous baseline. The sim-
ple score ensemble of multiple systems is still valid for this ex-
periment. The best results are achieved after a simple score
ensemble. In addition, our proposed model outperforms other
networks across the board compared to all the various methods
that have achieved good results on this dataset.

The assumption that the weights of keyframes for both
modalities are different expression styles for the same facial
action works in audio-visual task. These approaches reduce
EER by 36.4% relatively compare with the normal fusion, but
it is enough to prove that this supervision method is effective.
As a result, this approach can be further adapted for recognition
tasks covering both movement and sound.

About 20 hard samples were selected from the VoxCeleb1
for t-SNE visualization. It can be seen from Fig.2 that each
diagram of a single modality can easily find 5-6 outliers. But
our network is more robust to these outliers. This phenomenon
well demonstrates the robustness of the proposed network.

5. Conclusion
Generally, we proposed a novel audio-visual strategy that con-
siders temporal relations from a generative perspective. Com-
pared with previous aggregators, we proposed joint attentive
pooling based on generative supervision as a generic aggrega-
tor for the first time. It significantly reduces the EER down to
28.0% of the popular systems. And analysis shows the robust-
ness of our network and the existence of possible relations. In
future work, more audio-visual tasks will be explored based on
such thoughts.
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