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Abstract

Data augmentation is one of the methods used to robustly train
machine learning models with a small dataset. This method ran-
domly applies pre-defined data processing operations to input
data, regardless of the characteristics of the input data. How-
ever, some data processing operations may be inappropriate for
certain data. In this study, we propose a new method to auto-
matically search for the best data processing operations for each
sound file to be input into a sound classification neural network.
The proposed method is an improvement on the previously
proposed differentiable automatic data augmentation (DADA),
which uses a differentiable neural network to select the optimal
data processing operations. We evaluated our proposed method
on an acoustic scene classification task on the ESC-50 dataset
and demonstrated that the proposed method can train a more
robust model compared to the original DADA-based data aug-
mentation.
Index Terms: acoustic scene classification, data augmentation,
differentiable automatic data augmentation

1. Introduction
When developing deep learning models, it is generally easier to
achieve good models by training on a large dataset. However,
in some cases, it may not be feasible to prepare a large dataset
due to the cost of labeling or the scarcity of sample data. There-
fore, a widely used technique is to pseudo-increase the number
of data by applying some data processing to the data in the cur-
rently available dataset and making minor changes to the orig-
inal data. This process is called data augmentation (DA). For
instance, in image recognition tasks, images can easily be ro-
tated, moved, and zoomed without reducing image quality and
used as augmented data [1]. Acoustic data processing methods,
such as Gaussian noise addition [2], time stretching [3], time
masking [4], and mix-up [5, 6], have also been proposed for the
acoustic scene classification task [7, 8] addressed in this paper.

Naturally, the choice of data processing operation for DA
depends on the data. For example, in the field of image recog-
nition, affine-transformations can be applied to data with min-
imal degradation, but such processing is unsuitable for signal
data such as sound. Rotation and flipping are useful for object
recognition and detection tasks in the image processing area,
but they are not suitable for character recognition tasks. In
speech recognition and acoustic scene classification tasks, data
processing operations such as time stretching and time masking
are frequently used but are not applicable to anything other than
signals. Therefore, selecting and applying the appropriate data
processing operation for the specific task is a crucial factor in
improving model accuracy. However, training the model each
time the DA design strategy is altered and seeking the appro-
priate combination of data processing operations require signif-
icant computational resources and human effort.

Therefore, an automatic optimization method for data aug-
mentation called automatic data augmentation (ADA) has been
proposed. Automatic data augmentation automatically searches
for the optimal combination of data processing operations from
a set of pre-designed data processing operations. This optimal
combination of data processing operations is generally called
a policy. A processing operation for a given data, or a combi-
nation of several of them, is called a “sub-policy,” and a DA
strategy that performs the optimal combination of sub-policies
is called a “policy” in this paper. Research on ADA began with
AutoAugment [9], and several methods have been proposed, in-
cluding [10, 11, 12, 13].

However, although these studies can search for effective
policies for most of the data in the training dataset, they have
not been able to perform a policy search that focuses on indi-
vidual data. For example, in an object recognition task that in-
volves recognizing an image of a “car” and an image of an “ap-
ple,” applying a data processing operation that performs color
transformation to the “car” image can result in the transformed
image being identified as a “car.” However, in the case of an
“apple” image, color is also an essential recognition factor, and
the same data processing operation cannot be applied as in the
case of a “car.”

Therefore, in this paper, we propose an ADA that is adap-
tive to the nature of individual data. We apply the proposed
ADA to the ESC-50 dataset [14], which is commonly used in
acoustic scene classification tasks, to verify its effectiveness.
If the proposed method’s effectiveness is demonstrated on the
dataset, it can be expected to be applied to other tasks, such as
environmental sound analysis. Our proposed ADA is based on,
and improves upon, differentiable automatic data augmentation
(DADA) [13], which has been successfully applied to image
classification tasks. In the original DADA, the selection of sub-
policies (a combination of multiple data processing operations)
is based on categorical distributions, but the proposed method
uses a neural network to extract features of the input data and
reflect them in the sub-policy search of the DADA. In addition,
we introduce the concept of Faster AutoAugment (FAA) [12] to
constrain the distribution of the embedding vectors of the data
after data processing to be close to the distribution of the em-
bedding vectors of the original data before processing. This can
suppress inappropriate data processing.

In the experiment, we evaluated the performance of the pro-
posed method for automatically exploring the optimal DA pol-
icy in the acoustic scene classification task using the ESC-50
dataset. The acoustic scene classification model was trained us-
ing the DA policy explored with the proposed method, improv-
ing accuracy by 2.1% compared to those using the DA policy
explored with the original DADA. These results demonstrated
the effectiveness of the proposed method in the acoustic scene
classification task.

The contributions of this work can be summarized in the
following two points:
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• The automatic search for a DA policy that takes into account
the characteristics of individual sound data was shown to be
effective in the acoustic scene classification task.

• In addition, we demonstrated that performing the DA policy
search using a method that minimizes the distance between
the distributions of the embedding vectors in the dataset be-
fore and after data augmentation is effective.

2. Automatic Data Augmentation
Automatic data augmentation (ADA) is a method of searching
for a DA policy that minimizes the validation loss by applying
a data processing operation during model training and gener-
alizes the dataset so that the model avoids over-training. As-
suming Dtrain and Dvalid are the training and validation data,
respectively, and T is the data augmentation policy, ADA can
be formalized as finding an algorithm that solves the following
two-layer optimization problem:

min
T

L (θ∗ | Dvalid) s.t. θ∗ ∈ argmin
θ

L (θ | T (Dtrain)) (1)

where θ represents the parameters of a classification model, and
L (θ | D) is the loss for a set D.

In ADA, when training classification models, it is common
to optimize the DA policy using a reduced dataset from which
a portion of the full-size dataset is taken, and then apply the
optimized DA policy to the full-size dataset to train the classifi-
cation model from scratch.

2.1. AutoAugment

AutoAugment [9] was one of the first studies to focus on ADA.
It solved the problem formulated in Equation (1) by fully train-
ing a small model multiple times with different DA policies on
a subset of the training dataset and using the validation loss as
the reward function for reinforcement learning.

The DA policy optimized by AutoAugment consists of sev-
eral sub-policies. A sub-policy is a concatenation of a few data
processing operations. A data processing operation has an in-
tensity parameter µ, which indicates how strongly the input data
should be processed, and a probability parameter p, which is the
probability that the operation will be applied.

Recurrent neural networks are used to optimize the DA pol-
icy in AutoAugment by optimizing which data processing op-
erations to choose, its intensity µ, and its probability of appli-
cation p. The disadvantage of this method is its computational
cost, and the policy search is extremely time-consuming.

2.2. Faster AutoAugment

Faster AutoAugment (FAA) is an improvement on the Au-
toAugment described in Section 2.1, which requires a huge
computational cost to find a DA policy. FAA allows for a
DA policy to be obtained with a realistic computational cost.
Specifically, we approximated the parameters (µ, p, and sub-
policy selection) used for the DA policy in AutoAugment to
be differentiable and designed an objective function to optimize
them using back-propagation. This allowed for a fast optimiza-
tion of the DA policy.

If the parameters of the DA policy can be replaced by
differentiable ones, optimization can be achieved by back-
propagation with an appropriate objective function. A can-
didate for this objective function could be verification loss
minimization, as in differentiable architecture search (DARTS)
[15]. However, this approach can be very time-consuming and
memory-intensive. To avoid this problem, FAA assigns an ob-
jective function to a different approach.
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Figure 1: Policy search with DADA.

Data augmentation can be considered as a process of fill-
ing in missing data in the training dataset. Therefore, we con-
sider it as a problem of minimizing the distance between the
distribution of embedding vectors in the original data and the
distribution of embedding vectors after data augmentation. The
Wasserstein GAN (W-GAN) [16] with gradient penalty [17] can
be used as this objective function, which minimizes the distance
between these distributions. Unlike GANs for image genera-
tion [18], this model does not have a typical image generator
using a conventional neural network. Instead, the DA policy is
optimized and processes the data with several predefined sub-
policies. In other words, the DA policy is optimized by con-
sidering the DA policy as the generator and the DA evaluation
model as the discriminator.

2.3. Differentiable Automatic Data Augmentation

In this study, we propose an extended method for optimizing a
DA policy using DADA, which has already been proposed in
image recognition research [13]. To do this, we first give a brief
description of DADA. DADA for acoustic scene classification
model training has already been studied [19], and this study is
an extension of this work. Basically, DADA is a derivative of
AutoAugment; the contributions of DADA are the following
two points:

1. Efficient DA policy optimization, and
2. Introduction of an accurate gradient estimator.
First, regarding the first point, DADA is a simple sampling-
based optimization method in which two sub-optimizations,
“DA policy optimization” and “classification model training,”
are repeated until convergence, as in AutoAugment. However,
since this sequential optimization is computationally expensive,
the parameters of the DA policy and the classification model
are simultaneously optimized by the stochastic gradient descent
method with reference to DARTS [15]. This one-pass strategy
can significantly reduce the computational cost.

The classical gradient estimation method for the second
point is the Gumbel-Softmax estimation method [20]. However,
the gradient estimated by Gumbel-Softmax is biased. To over-
come this, RELAX [21], an unbiased gradient estimator, was
introduced. Figure 1 shows an overview of the policy search
with DADA. Unlike Faster AA, the DA search model in DADA
uses a classification model; the policy can be updated by using
how the accuracy of the model changes after the DA search due
to the DA policy as a criterion for determining the appropriate-
ness of the DA.

The parameters of DADA are the same as those of Au-
toAugment, namely, the choice of sub-policy, its intensity pa-
rameter µ, and the probability parameter p. These are differ-
entiable in the same way as in Faster AA. However, the choice
of the data processing method is optimized differently than in
Faster AA.

In the case of DADA, all possible sub-policies are gener-
ated in advance from the set of data processing operations to
be explored. Among these sub-policies, policy optimization is
performed to select the appropriate sub-policies for the dataset.
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Figure 2: Policy search with the improved DADA.
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Figure 3: The sub-policy selection network.

A categorical distribution is used for sub-policy selection.
When selecting the sub-policy, we sample from the categori-
cal distribution Cat (s | π) with probability π. s is the set of
sub-policies. That is, the priority of which sub-policy should
be selected in the Categorical distribution is determined by
π. The probability π is calculated as a softmax for parame-
ter α = α1:N , which defines the priority of the N sub-policies.
However, since Categorical and Bernoulli distributions are not
differentiable, they are relaxed to a differentiable state using the
Gumbel Softmax gradient estimation method [20]. For more ac-
curate gradient estimation, we introduced an unbiased gradient
estimator called RERAX [21].

The above represents the preliminary preparation for
DADA. The search for the optimal policy is then performed by
optimizing the parameter α through a procedure that includes
parameter update, loss computation, and gradient computation.

3. Improved DADA
The ADA techniques briefly introduced in Section 2 solve the
problem of finding the optimal DA policy for a dataset. How-
ever, as mentioned in Section 1, it is possible that there are in-
appropriate sub-policies for some data. Therefore, in this study,
we improve DADA to develop a method for finding the optimal
DA policy that matches the characteristics of the sound data,
so that an appropriate data processing operation is selected for
each individual data.

3.1. Sub-policy selection network

Figure 2 represents a schematic diagram of our proposed ADA.
In DADA, sub-policy selection was based on the parameter
α = α1:N , which defines the priority of sub-policy selection,
and a categorical distribution was used to assign a selection
probability to each sub-policy. While the DADA method esti-
mated this parameter α directly, the proposed method estimates
α using a sub-policy selection network (ResNet34 [22] is used
in this study). This is expected to allow the optimal sub-policy
to be selected using the characteristics of the sound data.

As shown in Figure 3, this sub-policy selection network
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Figure 4: The policy search network based on FAA.

consists of two feature extractors (FEs) and two fully connected
(FC) layers. The input sound data (acoustic features) are out-
put by the two FEs. “Output-A” is a sub-policy selection vec-
tor and corresponds to the alpha parameter of DADA. The vec-
tor dimension is 40, which corresponds to the number of sub-
policies to be selected in this work. “FE-A” has weights that
are pre-trained without data augmentation using the dataset to
be searched for the optimal policy. These weights are not up-
dated during policy optimization. “FE-B” is trained during the
policy search using the training data after DA. In the proposed
method, the two FEs can be considered as trained with two dif-
ferent types of data, one before and one after DA. We believe
that this would allow for an effective DA policy search with
Output-A.

Next, we describe the training method of the sub-policy
selection network. Output-A is used to optimize the DA pol-
icy selection with DADA, and Output-B is used for error back-
propagation with class classification losses to train FE-B. Since
these losses cannot be obtained simultaneously from a single
sound data, the sub-policy selection network is optimized twice
per training step. First, the data prior to DA are fed into the sub-
policy selection network, and the appropriate sub-policy for the
data is selected based on Output-A. The data are processed us-
ing the selected sub-policy and the gradient of the sub-policy is
calculated using DADA. Based on this information, only “FC-
A” is trained to obtain Output-A of the sub-policy selection net-
work. At this point, the weights of the two FEs are kept fixed.
The data after DA obtained in the above procedure are then fed
into the sub-policy selection network. Now, FC-B and FE-B are
trained to obtain Output-B based on the class classification loss
of Output-B. The binary cross entropy (BCE) is used for the
class classification loss of Output-B.

3.2. Minimization of distance between distributions

Another improvement is the application of the FAA framework
to DADA. As shown in the lower part of Figure 2, a new model
for “Policy search network (FAA)” is added. This model serves
as a discriminator for the Wasserstein GAN [16] in the FAA
framework.

The specific model structure is shown in Figure 4. The
model takes sound data (acoustic features) and produces
two outputs, Output-A and Output-B. Output-A is a one-
dimensional output to determine whether the input data are be-
ing processed. The Wasserstein GAN used in FAA calculates
the Wasserstein distance, which is the distance between data
distributions, based on this true/false decision. The Wasserstein
distance can be used as a loss function, and the generator (DA
policy) is optimized so that the Wasserstein distances between
data distributions are closer before and after DA. Output-B is
the output of the 50 dimensions1 for classification. FAA uses
class classification loss in addition to Wasserstein distance to
find a DA policy that is close to the nature of the original data

1This is due to the use of the ESC-50 dataset.

5413



Table 1: List of DA operations.

(a) For waveform domain

DA operation Explanation
Non Nothing to do
RandomFlip Reverse in time direction
RandomScale Extension/shortening in time direction
Gaussian Adding Gaussian noise

(b) For mel-spectrogram domain
DA operation Explanation
Non Nothing to do
FrequencyMasking Mask some data on the frequency axis
TimeMasking Mask some data on the time axis
TimeStretch Extension/shortening in time direction

and less prone to misclassification.

4. Experiment
4.1. Experimental setup

4.1.1. Dataset

The proposed method is evaluated on an acoustic scene clas-
sification task using the ESC-50 [14] dataset, which contains a
total of 2,000 sound files of 50 classes of environmental sounds.
On the other hand, the normal dataset contains 400 evaluation
data, and the remaining 1,600 data are divided into 1,360 and
240 files, which are used as training and validation data, respec-
tively. On the other hand, a reduced dataset is used for the DA
policy search. This is a 1:1 split of the 1,600 data, excluding the
evaluation data from the normal dataset, and is used for training
and validation of the policy search network.

4.1.2. Classification model

The ResNet34 model [22] was used as the classification model.
A 64-dimensional log mel-spectrogram was used for acoustic
features for the classification model training and policy search.
We used BCE as the loss function during model training, the
optimization function was Adam with 0.00025 of learning rate,
and the mini-batch size was set to 32.

Although the accuracy could be improved by using a more
powerful model, such as a transformer [23], a simple model was
adopted because the purpose of this paper is to compare ADA
methods and to demonstrate the effectiveness of the proposed
ADA method.

4.1.3. DA sub-policy

The data processing operations are classified into two cate-
gories, one for the waveform domain (Table 1 (a)) and the other
for the mel-spectrogram domain (Table 1 (b)), each with four
different data types. In this study, two of these data processing
procedures were combined to form sub-policies. A total of 40
sub-policies were created. The combinations of data processing
operations in the waveform and mel-spectrogram domains are
shown in Figure 5.

4.1.4. Training conditions for policy search

We used Adam as the optimization function for the neural net-
works for policy search, including DADA and the proposed
method. The learning rate was set to 0.00025, and the mini-
batch size was commonly set to 32. Classification loss and
Wasserstein loss were used in the optimization of the FAA
model, combined in a ratio of 10:1.

Original data
(Raw-waveform)

Augmented data
(Mel-spectrogram)

DA for
mel-spectrogramFeature Extract DA for

mel-spectrogram

Pattern 1: DA for mel-spectrogram and DA for mel-spectrogram → 4×3 = 12 sub-policies

Original data
(Raw-waveform)

Augmented data
(Mel-spectrogram)

DA for
raw-waveform Feature Extract DA for

mel-spectrogram

Pattern 2: DA for raw-waveform and DA for mel-spectrogram → 4×4 = 16 sub-policies

Original data
(Raw-waveform)

Augmented data
(Mel-spectrogram)

DA for
raw-waveform Feature ExtractDA for

raw-waveform

Pattern 3: DA for raw-waveform and DA for raw-waveform → 4×3 = 12 sub-policies

Figure 5: Combinations of DA operations for raw-waveform
and mel-spectrogram data.

Table 2: F1 scores [%] by ADA methods.

ADA methods F1 score
w/o DA 70.5
DADA (baseline) 73.9
DADA+SPS 75.3
DADA+FAA 75.6
DADA+SPS+FAA (proposed) 76.0

4.1.5. Evaluation metric

The evaluation of the investigated DA policies is based on the
performance of the acoustic scene classification model learned
during the DA processing using the policies. The macro aver-
age of the F1 scores for each class was used as the evaluation
metric for the acoustic scene classification model. The model
was trained five times under the same conditions and the aver-
age of these training sessions was used as the final evaluation
metric.

4.2. Result and discussion

In the experiment, we evaluated acoustic scene classification
models trained under the following five ADA conditions: (w/o
DA) no DA applied, (DADA, baseline) original DADA ap-
plied, (DADA+SPS) DADA plus a subpolicy selection model,
(DADA+FAA) DADA plus FAA, and (DADA+SPS+FAA) pro-
posed method. Table 2 presents the classification performance
for the models trained with each ADA method.

The classification performance of the model trained without
any DADA was 70.5%, and the application of ADA improved
the classification performance. Among the ADA methods, the
baseline DADA exhibited the lowest classification performance.
The introduction of sub-policy selection models and FAA were
individually effective and exhibited higher performance com-
pared to the baseline DADA. The proposed method had the
highest classification performance, namely 76.0%, which was
an improvement of 2.1% on the baseline. This confirmed the
effectiveness of the proposed method.

5. Conclusions
In this paper, we proposed an improved version of DADA for
sound data that “reflected the characteristics of individual data”
and “closed the data distribution before and after DA.” The re-
sults indicate that the proposed method could train a classifica-
tion model that performs better than the original DADA.

In the future, we intend to confirm the effectiveness of the
proposed method on other model structures besides ResNet34
and on tasks dealing with other sound data.
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