
Time-synchronous one-pass Beam Search for Parallel Online and Offline
Transducers with Dynamic Block Training

Yui Sudo1, Muhammad Shakeel1, Yifan Peng2, Shinji Watanabe2

1Honda Research Institute Japan Co., Ltd., Saitama, Japan
2Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA

{yui.sudo, shakeel.muhammad}@jp.honda-ri.com, yifanpen@andrew.cmu.edu, shinjiw@ieee.org

Abstract
End-to-end automatic speech recognition (ASR) has be-

come an increasingly popular area of research, with two main
models being online and offline ASR. Online models aim to
provide real-time transcription with minimal latency, whereas
offline models wait until the end of the speech utterance be-
fore generating a transcription. In this work, we explore three
techniques to maximize the performance of each model by 1)
proposing a joint parallel online and offline architecture for
transducers; 2) introducing dynamic block (DB) training, which
allows flexible block size selection and improves the robust-
ness for the offline mode; and, 3) proposing a novel time-
synchronous one-pass beam search using the online and of-
fline decoders to further improve the performance of the offline
mode. Experimental results show that the proposed method
consistently improves the character/word error rates on the CSJ
and LibriSpeech datasets.
Index Terms: speech recognition, transducer, beam search,
conformer, blockwise

1. Introduction
End-to-end automatic speech recognition (ASR) has garnered
significant attention as a practical system, and various mod-
els such as connectionist temporal classification (CTC), re-
current neural network transducers (RNN-T), attention mech-
anism, and CTC/attention have been actively studied [1–5]. Al-
though these models have shown significant performance im-
provements, minimizing latency is also an important issue for
the wider practical application of ASR systems. To address
this issue, many studies have focused on developing end-to-end
ASR models that can perform streaming processing [6–10].

The simplest approach is the unidirectional long short
term memory (LSTM) [6]. Causal transformer/conformer
[7] enables streaming processing, but restricts context, result-
ing in performance degradation compared to the full context
model. Another approach is to limit the window length of
self-attention in transformers and conformers using blockwise
processing. This method has been used in systems based on
hidden Markov models, [11, 12], RNN-T [8, 13], attention [9],
and CTC/attention [10,14–16]. Although these methods outper-
form causal-based methods at the sacrifice of mildly increasing
the latency, it remains difficult for these methods to outperform
full-context models.

Several attempts have been made to improve the perfor-
mance of the online and offline model by combining them. One
approach is to jointly train the decoders for online and offline
processing with multitask learning and use two-pass rescoring
to improve the performance of the offline mode [17–19]. The
performance of the two-pass rescoring is highly dependent on

the first pass, because it cannot be corrected in the second pass
unless it includes the correct hypothesis in the first pass.

The second approach uses a cascaded encoder structure,
in which the online and offline encoders are connected in a
cascaded manner [20, 21]. The full-context encoder in this
method corrects the hidden state vector output by the causal en-
coder in the offline mode. This cascaded encoder structure has
also been extended to chunk-based encoders with two differ-
ent chunk sizes [22, 23]. It has been reported that this structure
provides significant performance gains for the offline mode, but
only marginal gains for the online mode [20]. In addition, the
chunk-based cascaded encoder structure only allows predeter-
mined chunk size combinations. ASR systems typically have
different accuracy and latency requirements for different sce-
narios, which increases model training overhead.

The third approach improves the online performance via
knowledge distillation (KD) [24–26]. In KD-based methods,
the offline model is used as the teacher model to improve the
performance of the online mode (student model). Although
KD is effective in bridging the performance gap between online
and offline modes, it may also transfer errors from the teacher
model to the student model. In addition, it is usually difficult to
improve the performance of the teacher model with KD-based
methods because the distillation loss between the teacher and
student models is backpropagated only to the student model. If
we can take better advantage of both online and offline modes,
we can further improve the performance of both modes.

This paper proposes a novel joint online/offline transducer
model that uses a blockwise and full-context encoders in paral-
lel to exploit the advantage of both online and offline modes
(Figure 1b). Furthermore, the online and offline models are
jointly optimized by dynamically selecting the block size dur-
ing training - we refer to this as dynamic block (DB) train-
ing [27, 28]. Unlike cascaded encoder-based methods [20, 21],
the proposed method improves the online mode and allows flex-
ible block size selection during inference through DB training.
The DB training also improves the offline mode, unlike the KD-
based methods [24–26], as it increases the variability of the en-
coder output during training. In addition, the one-pass beam
search algorithm, which incorporates both online and offline de-
coders further enhances the complementarity of each decoder in
the offline mode. Our contributions are as follows:

• We demonstrate that the proposed joint model improves the
performance of both online and offline modes.

• We introduce the DB training to allow flexible block size se-
lection and improves the robustness of the offline mode.

• We propose a novel one-pass beam search to further improve
the performance of the offline mode.
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2. Preliminary
This section describes blockwise and full-context conformer-
transducer [15, 29, 30], which are used in the proposed method.

2.1. Full-context conformer encoder

The conformer [29, 30] encoder comprises two convolutional
layers for downsampling, a linear projection layer, and a posi-
tional encoding layer, followed by N conformer blocks. The
convolutional layers take an audio feature sequence, X , and
subsample it. The conformer blocks then transform this sub-
sampled feature sequence to an T -length hidden states Hoff =
[h1, ...,hT ] as:

Hoff = FullEnc(X). (1)

Each conformer block has two feed forward layers, a multi-
headed self-attention layer, a convolution layer, and a layer-
normalization layer, with residual connections.

2.2. Blockwise conformer encoder

The encoder can be computed blockwise for streaming scenar-
ios as described in [15]. Let Lblock and Lhop represent the block
size and hop length, respectively. The b-th block of the input
audio feature seuence Xb is defined as,

Xb = (Xt|t = (b−1)Lhop+1, ..., (b−1)Lhop+Lblock+1) (2)

The corresponding hidden state for the b-th block are encoded
for each block containing Lblock-length hidden states. This pro-
cess is performed sequentially and finally yields a T -length hid-
den state described as follows,

Hon = BlockEnc(X). (3)

2.3. Transducer decoder

The transducer decoder consists of a prediction and a joint net-
work. The prediction network generates a high-level represen-
tation gs by conditioning on the previous nonblank token se-
quence gs−1, where s represents a nonblank token index de-
scribed as follows:

gs = PredNet(gs−1). (4)

The joint network is a feed-forward network that combines ht

and gs in Eq. (4) described as follows:

zt,s = JointNet(ht, gs). (5)

The transducer model marginalizes the potential alignments z
that output y as follows:

P (y | H) =
∑

z∈Z(y)

P (z|H) =
∑

z∈Z(y)

[
T+S∏

i=1

P (zi | hti , gsi)

]
,

(6)
where S denotes the total length of the complete token se-
quence, and i represents a position in (T +S)-length alignment
path specified by ti-th decoder state and si-th token, respec-
tively. For both online and offline transducers, the model param-
eters are optimized by minimizing the negative log-likelihood as
follows:

Lon = − logPon(yon | Hon), (7)

Loff = − logPoff(yoff | Hoff). (8)

(a) Cascaded encoder [20]. (b) Proposed model.

Figure 1: Comparison of the proposed model with the cascaded
encoder: The proposed model is jointly trained using dynamic
block training and decoded using one-pass beam search.

3. Proposed method
Figure 1b illustrates the architecture of the proposed method,
which includes blockwise and full-context encoders capable of
handling both online and offline modes. The audio feature se-
quence X is fed in parallel to the blockwise and full-context
encoder. In the online mode, the blockwise encoder produces
a hidden state vector, Hon, which is fed to the online decoder,
as in the conventional online RNN-T which corresponds to the
green part in Figure 1b. In the offline mode, the hidden state
vectors Hon and Hoff in Eq. (1), (3) are vertically stacked, un-
like the cascaded encoder (Figure 1a) as follows:

Hcasc
off = FullEnc(Hon), (9)

Hpara
off = concat(Hon,Hoff). (10)

The proposed structure avoids the error accumulation that often
occurs in cascade structures. In addition, it is designed with the
concept that the blockwise and full context encoders can better
extract local and global features, respectively. The concatena-
tion of the hidden state vectors from both encoders, Hon and
Hoff , enables offline mode using both local and global features.
Multitask learning of online and offline outputs can improve the
robustness of the blockwise encoder as described in Section 3.1.
A one-pass beam search is then used to further improve offline
mode performance, as described in Section 3.2. Note that sep-
arate transducer decoders are used in this study to avoid online
and offline modes interfering with each other.

3.1. Joint training with dynamic block selection

The proposed model is optimized by multitask learning using
the weighted sum of losses as shown in Eqs. (7), (8) and de-
scribed below:

L = λLon + (1− λ)Loff, (11)

where λ represents the training weights. Similar to [27, 28], we
used the DB training by dynamically changing Lblock in Eq. (2).
The proposed DB training randomly selects a block size from
[Lmin - Lmax] for each batch during training. This technique
improves the robustness of the offline mode by increasing the
variability of the output of the blockwise encoder during train-
ing. Moreover, it also allows flexible block size selection during
inference without compromising performance. In other words,
the block size can be flexibly adjusted according to accuracy
and latency requirements.

3.2. Joint decoding using one-pass beam search

We also propose a novel one-pass beam search, which combines
online and offline transducer decoders to improve offline mode
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Algorithm 1 Proposed one-pass beam search

1: hyps = {<blank>:1.0}
2: for t = 1 to T do
3: A = hyps; ext hyps = {}
4: while ext hyps contains less than kpre elements more

probable than the most probable in A do
5: l = most probable in A; remove l from A
6: for zt ∈ top-k pre(Poff(zt)) do
7: Add l and score to ext hyps (if zt isϕ else Add l ⊕

zt to A)
8: end for
9: end while

10: for l ∈ ext hyps do
11: αoff = ext hyps[l]
12: αon = OnScore(l,hon, Pon(zt−1))

13: ext hyps[l] = µαon + (1− µ)αoff

14: end for
15: hyps = top-k(ext hyps, kbeam)
16: end for
17: return hyps

Figure 2: RNN-T scoring: For the hypotheses generated by the
offline transducer decoder at t, the probability of generating the
same hypothesis from the previous hypotheses is computed.

performance, as described in Algorithm 1. This method differs
from other one-pass beam search methods proposed in [31–34]
in that it scores the hypotheses using two RNN-T decoders.
Moreover, unlike the label-synchronous one-pass beam search
proposed in [34], which computes the probability of all possi-
ble alignment paths in CTC prefix scoring, the proposed method
avoids this inefficient scoring using time synchrony.

The proposed method uses the offline transducer decoder
as the primary decoder, which generates the initial hypotheses
(lines 4-9 in Algorithm 1). The online transducer decoder is
used to score the generated hypotheses to search more probable
hypotheses described as OnScore(·) in line 12 of Algorithm 1.
Specifically, the probability of generating ext hyps from the pre-
vious hypotheses with the probabilities, Pon(zt−1), held at time
t − 1 are computed for the hypotheses generated by the offline
transducer decoder at time t. Because the transducer decoder
may emit multiple tokens for each time frame, all possible paths
must be added together (Figure 2). Joint score, αjoint, is then cal-
culated using a decoding weight µ described as,

ext hyps[l] = αjoint = µαon + (1− µ)αoff. (12)

The joint score, αjoint, is used to retain the top kbeam hypothe-
ses, hyps, for the next time frame (line 15 in Algorithm 1),
where kbeam represents the beam size.

Table 1: Effect of the proposed method on the CSJ (CER). DBT
represents the DB training.
Mode Method eval1 eval2 eval3 ave

Separated 7.44 5.46 12.70 8.53
Cascaded encoder [20] 8.11 5.62 13.66 9.13

Online Parallel encoder (ours) 7.24 5.53 12.40 8.39
+ DBT (ours) 7.50 5.45 12.20 8.38
Separated 5.78 4.15 9.94 6.62
Cascaded encoder [20] 5.72 4.07 9.81 6.53
Parallel encoder (ours) 5.72 4.11 10.33 6.72

Offline + 2-pass rescoring 5.64 4.13 10.25 6.67
+ 1-pass (ours) 5.71 4.03 10.15 6.63
+ DBT (ours) 5.65 4.06 9.87 6.53
+ DBT + 1-pass (ours) 5.55 3.89 9.65 6.37

4. Experiments
4.1. Experimental setup
The input features consisted of 80-dimensional Mel-scale filter-
bank features with a window size of 512 samples and a
hop length of 160 samples, sampled at 16 kHz, followed by
SpecAugment [35]. Both full-context and blockwise encoders
consisted of two convolutional layers with stride two and a 256-
dimensional linear projection layer followed by 12 conformer
layers with 1024 linear units. During training, the block size,
Lblock in Eq. (2), was randomly selected from [5 - 50] using the
DB training as described in Section 3.1. For both transducer
decoders, a single LSTM layer with a hidden size of 256 and a
linear layer of 320 joint sizes was used for prediction and joint
networks. The proposed joint model was trained for 50 epochs
with the Adam optimizer at a learning rate of 0.0015 and a train-
ing weight, λ in Eq. (11), of 0.5. The decoder weight for the
online decoder, µ in Eq. (12), was 0.3. The proposed method
was tested using two datasets: Corpus of Spontaneous Japanese
(CSJ) [36], and LibriSpeech 960 h [37]. For the CSJ corpus,
we used 299 h of academic presentation speech data. The char-
acter/word error rate (CER/WER) were calculated for CSJ and
LibriSpeech, respectively. The emission delay (ED) as defined
in [38] is calculated to evaluate the latency of the online mode
using a GPU (NVIDIA RTX3090). The ESPnet [39] toolkit was
used for the evaluation.

4.2. Main results
Table 1 presents the experimental results on CSJ. The proposed
method was compared to other approaches such as separately
trained online/offline transducers and a cascaded encoder. For a
fair comparison we implemented the cascaded encoder as pro-
posed in [20] and used same number of encoder layers as pro-
posed in our architecture.

The proposed method, which utilized three proposed tech-
niques – the parallel encoder structure, DB training, and one-
pass beam search, demonstrated the best performance in both
online and offline modes. Furthermore, the proposed method
also outperformed the cascaded encoder in both modes. In par-
ticular, the cascaded encoder did not show any improvement in
the online mode, whereas the proposed method achieved per-
formance improvement in both modes. In addition, the one-
pass beam search, which tightly combines the online and of-
fline modes, resulted in greater performance improvement than
the two-pass rescoring.

4.3. Detail analysis of the DB training for online mode
Figure 3 shows the relationship between block size and CER
during decoding on the CSJ (average of eval1-3). The blue line
represents the proposed model with the DB training, while the
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Figure 3: Effect of the DB training for online mode.
Table 2: Comparison of emission delay for different block sizes.
Block Block Separated Proposed w/ DB
size length (ms) CER ED (ms) CER ED (ms)
10 400 15.90 160 10.29 190
20 800 8.53 300 8.38 290
40 1600 9.27 470 7.95 460
80 3200 10.23 720 7.93 710

red and green lines represent the separate online model and the
proposed model trained with a block size of 20, respectively.
Although the proposed model without the DB training showed
slightly better CER than the separate model, its performance
deteriorated significantly for block sizes other than the prede-
termined block size of 20. In contrast, the proposed model with
DB training outperformed the baseline for all block sizes, with
a tradeoff between block size and CER.

Table 2 shows the ED measured using a GPU (NVIDIA
RTX3090) in both the proposed model with DB training and
the separate model. The proposed method significantly outper-
formed the separated model for all block sizes, while maintain-
ing comparable ED at almost all block sizes, with a slight in-
crease observed at a block size of 10.

4.4. Effect of the DB training for offline mode
Figure 4 shows the relationship between block size and CER
for the offline mode on the CSJ (average of eval1-3). The red
line represents a separate offline model, and the green and blue
lines represent the proposed model using the proposed one-pass
beam search with and without DB training, respectively. The
proposed model trained with a block size of 20 slightly outper-
formed the separate model when the block size was 20. How-
ever, offline mode performance decreased for block sizes other
than 20. The proposed DB training achieved equal or better
CER than the separate model for all block sizes. Notably, the
proposed DB training resulted in enhanced robustness of the of-
fline mode, outperforming the baseline when the block size was
greater than 10.

4.5. Effect of the one-pass beam search
We examined the effect of the decoder weight, µ, in Eq. (12)
with the proposed one-pass beam search on the CSJ eval1. Fig-
ure 5 shows the relationship between the decoder weight and
CER. Compared to the case with no decoder weight, (µ = 0),
the CER improved as µ increased, with the smallest CER at µ
= 0.3. This improvement suggests that the decoder weight can
play a significant role in enhancing the performance of the one-
pass beam search. The results demonstrate that the proposed
method can enhance performance stably over a broad range of
µ values ranging from 0 to 0.8. We also observed a similar
trend with the Librispeech 960 h, which also showed the best
CER when the decoder weights were 0.3.

4.6. Evaluation on LibriSpeech 960 h
Table 3 presents the evaluation of the proposed method on Lib-
rispeech 960 h. The results demonstrate that the proposed

Figure 4: Effect of the DB training for offline mode.

Figure 5: Effect of the decoding weight.

Table 3: Evaluation (WER) on Librispeech 960 dev-clean (dc),
dev-other (do), test-clean (tc), and test-other (to).
Mode Method dc do tc to

Separated 3.64 9.91 3.80 9.67
Online Cascaded encoder [20] 3.54 9.63 3.79 9.31

Parallel encoder (ours) 3.49 9.20 3.73 9.28
Separated 2.37 5.85 2.66 5.82
Cascaded encoder [20] 2.33 5.85 2.61 5.78

Offline Parallel encoder (ours) 2.31 5.72 2.49 5.73
+ 2-pass rescoring 2.26 5.68 2.49 5.73
+ 1-pass beam search (ours) 2.19 5.54 2.35 5.57

Figure 6: Typical decoding results. A1/A2, B1/B2, represent
the online/offline mode of the separate and proposed models,
respectively, and B3 represents the one-pass beam search.

method surpassed the baseline in both online and offline modes,
which is consistent with the results of the CSJ evaluation. More-
over, the one-pass beam search algorithm further improved the
performance in the offline mode.

Figure 6 shows typical decoding results for the separate
models (A1, 2) and the proposed method (B1-3). A1 and B1
correspond to online mode, A2 and B2 represent offline mode,
and B3 represents one-pass beam search results. The incorrect
decoding results are highlighted in red, and results that were
worse in the offline mode than in the online mode are further
bolded. The separated offline model could have more errors
than the separated online model, whereas the proposed method
benefit from the both modes, allowing to effectively correct the
errors in the offline mode.

5. Conclusion
This paper presented a joint online/offline transducer that inte-
grates blockwise and full-context encoders. The joint training
method improved the performance of both the online and of-
fline modes. The proposed DB training technique enhanced the
robustness of the offline mode while allowing for flexible block
size selection for the online mode. Furthermore, the proposed
one-pass beam search utilizing the online/offline transducer de-
coders further improved the performance of the offline mode.
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